88 citations to https://www.mathnet.ru/rus/sm1856
  1. Kostas Skenderis, Balt C. Rees, “Holography and Wormholes in 2+1 Dimensions”, Commun. Math. Phys, 2010  crossref  mathscinet
  2. Colin Guillarmou, Sergiu Moroianu, Jinsung Park, “Eta invariant and Selberg zeta function of odd type over convex co-compact hyperbolic manifolds”, Advances in Mathematics, 225:5 (2010), 2464  crossref  mathscinet  zmath
  3. Guo R., Huang Zh., Wang B., “Quasi-Fuchsian 3-Manifolds and Metrics on Teichmüller Space”, Asian J. Math., 14:2 (2010), 243–256  crossref  mathscinet  zmath  isi
  4. Kirill Krasnov, Jean-Marc Schlenker, “A symplectic map between hyperbolic and complex Teichmüller theory”, Duke Math. J., 150:2 (2009)  crossref
  5. Mcintyre A., Teo L.-P., “Holomorphic Factorization of Determinants of Laplacians Using Quasi-Fuchsian Uniformization”, Lett. Math. Phys., 83:1 (2008), 41–58  crossref  mathscinet  zmath  adsnasa  isi
  6. Pietro Menotti, “Semiclassical and quantum Liouville theory”, J Phys Conf Ser, 33 (2006), 26  crossref  elib
  7. Leszek Hadasz, Zbigniew Jaskólski, “Semiclassical limit of the FZZT Liouville theory”, Nuclear Physics B, 757:3 (2006), 233  crossref  mathscinet  zmath
  8. Leon A. Takhtajan, Lee-Peng Teo, “Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces”, Commun. Math. Phys., 268:1 (2006), 135  crossref
  9. S Carlip, “Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole”, Class Quantum Grav, 22:12 (2005), R85  crossref  mathscinet  zmath  adsnasa  isi
  10. Leszek Hadasz, Zbigniew Jaskólski, Marcin Pia̧tek, “Classical geometry from the quantum Liouville theory”, Nuclear Physics B, 724:3 (2005), 529  crossref  mathscinet  zmath
Предыдущая
1
2
3
4
5
6
7
8
9
Следующая