68 citations to https://www.mathnet.ru/rus/rm629
  1. D. Huybrechts, M. Nieper-Wisskirchen, “Remarks on derived equivalences of Ricci-flat manifolds”, Math. Z., 267:3-4 (2011), 939–963  crossref  mathscinet  zmath  isi  elib  scopus
  2. M. Popa, Ch. Schnell, “Derived invariance of the number of holomorphic 1-forms and vector fields”, Ann. Sci. Éc. Norm. Supér. (4), 44:3 (2011), 527–536  crossref  mathscinet  zmath  isi  scopus
  3. S. Mahanta, “Higher nonunital Quillen $K'$-theory, $KK$-dualities and applications to topological $\mathbb T$-dualities”, J. Geom. Phys., 61:5 (2011), 875–889  crossref  mathscinet  zmath  adsnasa  isi  scopus
  4. A. Kuznetsov, L. Manivel, D. Markushevich, “Abel-Jacobi maps for hypersurfaces and noncommutative Calabi-Yau's”, Commun. Contemp. Math., 12:3 (2010), 373–416  crossref  mathscinet  zmath  isi  elib  scopus
  5. V. A. Lunts, D. O. Orlov, “Uniqueness of enhancement for triangulated categories”, J. Amer. Math. Soc., 23:3 (2010), 853–908  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  6. Huybrechts D., “The global Torelli theorem: classical, derived, twisted”, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., 80, no. 1, Amer. Math. Soc., Providence, RI, 2009, 235–258  crossref  mathscinet  zmath  isi
  7. L. Katzarkov, “Homological mirror symmetry and algebraic cycles”, Riemannian topology and geometric structures on manifolds, Progr. Math., 271, Birkhäuser Boston, Boston, MA, 2009, 63–92  mathscinet  zmath  isi
  8. L. Katzarkov, “Homological mirror symmetry and algebraic cycles”, Homological mirror symmetry, Lecture Notes in Phys., 757, Springer, Berlin, 2009, 125–152  crossref  mathscinet  zmath  adsnasa  isi  scopus
  9. Ludmil Katzarkov, Riemannian Topology and Geometric Structures on Manifolds, 2009, 63  crossref
  10. L. Katzarkov, “Birational geometry and homological mirror symmetry”, Real and complex singularities, 2007, 176–206, World Sci. Publ., Hackensack, NJ  crossref  mathscinet  zmath  isi
Предыдущая
1
2
3
4
5
6
7
Следующая