68 citations to https://www.mathnet.ru/rus/rm629
  1. A. C. López Martín, “Fourier-Mukai partners of singular genus one curves”, J. Geom. Phys., 83 (2014), 36–42  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
  2. Ch. Böhning, H.-Ch. G. von Bothmer, P. Sosna, “On the derived category of the classical Godeaux surface”, Adv. Math., 243 (2013), 203–231  crossref  mathscinet  zmath  isi  elib  scopus
  3. M. Bernardara, M. Bolognesi, “Derived categories and rationality of conic bundles”, Compos. Math., 149:11 (2013), 1789–1817  crossref  mathscinet  zmath  isi  elib  scopus
  4. S. Gorchinskiy, D. Orlov, “GGeometric phantom categories”, Publ. Math. Inst. Hautes Études Sci., 117:1 (2013), 329–349  crossref  mathscinet  zmath  isi  scopus
  5. U. V. Dubey, V. M. Mallick, “Reconstruction of a Superscheme From its Derived Category”, J. Ramanujan Math. Soc., 28:2 (2013), 179–193  mathscinet  zmath  isi  elib
  6. V. Brînzănescu, A. D. Halanay, G. Trautmann, “Vector bundles on non-Kaehler elliptic principal bundles”, Ann. Inst. Fourier (Grenoble), 63:3 (2013), 1033–1054  crossref  mathscinet  zmath  isi  scopus  scopus
  7. V. Maillot, D. Rössler, “On the birational invariance of the BCOV torsion of Calabi-Yau threefolds”, Comm. Math. Phys., 311:2 (2012), 301–316  crossref  mathscinet  zmath  adsnasa  isi  scopus
  8. U. V. Dubey, V. M. Mallick, “Reconstruction of a superscheme from its derived category”, J. Ramanujan Math. Soc., 27:4 (2012), 411–424  mathscinet  zmath  isi
  9. M. Bernardara, M. Bolognesi, “Categorical representability and intermediate Jacobians of Fano threefolds”, Derived categories in algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, 1–25  mathscinet  zmath  isi
  10. P. Sosna, “Linearisations of triangulated categories with respect to finite group actions”, Math. Res. Lett., 19:5 (2012), 1007–1020  crossref  mathscinet  zmath  isi  elib  scopus
Предыдущая
1
2
3
4
5
6
7
Следующая