93 citations to https://www.mathnet.ru/rus/rm4715
-
К. И. Солодских, “Граф-многообразия и интегрируемые гамильтоновы системы”, Матем. сб., 209:5 (2018), 145–165 ; K. I. Solodskikh, “Graph-manifolds and integrable Hamiltonian systems”, Sb. Math., 209:5 (2018), 739–758
-
А. А. Ошемков, М. А. Тужилин, “Интегрируемые возмущения седловых особенностей ранга 0 интегрируемых гамильтоновых систем”, Матем. сб., 209:9 (2018), 102–127 ; A. A. Oshemkov, M. A. Tuzhilin, “Integrable perturbations of saddle singularities of rank 0 of integrable Hamiltonian systems”, Sb. Math., 209:9 (2018), 1351–1375
-
В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56 ; V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727
-
S. S. Nikolaenko, “Topological classification of the Goryachev integrable systems in the rigid body dynamics: non-compact case”, Lobachevskii J Math, 38:6 (2017), 1050
-
С. С. Николаенко, “Топологическая классификация интегрируемого случая Горячева в динамике твердого тела”, Матем. сб., 207:1 (2016), 123–150 ; S. S. Nikolaenko, “Topological classification of the Goryachev integrable case in rigid body dynamics”, Sb. Math., 207:1 (2016), 113–139
-
Bolsinov A., “Singularities of Bi-Hamiltonian Systems and Stability Analysis”: Bolsinov, A MoralesRuiz, JJ Zung, NT, Geometry and Dynamics of Integrable Systems, Adv. Courses Math CRM Barc., Advanced Courses in Mathematics Crm Barcelona, Birkhauser Verlag Ag, 2016, 35–84
-
В. Е. Круглов, О. В. Починка, “Графовый критерий топологической эквивалентности $\Omega$-устойчивых потоков на поверхностях”, Журнал СВМО, 18:3 (2016), 41–48
-
В. Драгович, М. Раднович, “Топологические инварианты эллиптических биллиардов и геодезических потоков эллипсоидов в пространстве Минковского”, Фундамент. и прикл. матем., 20:2 (2015), 51–64 ; V. Dragović, M. Radnović, “Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space”, J. Math. Sci., 223:6 (2017), 686–694
-
М. П. Харламов, П. Е. Рябов, “Топологический атлас волчка Ковалевской в двойном поле”, Фундамент. и прикл. матем., 20:2 (2015), 185–230 ; M. P. Kharlamov, P. E. Ryabov, “Topological atlas of the Kovalevskaya top in a double field”, J. Math. Sci., 223:6 (2017), 775–809
-
Radnovic M., “Topology of the Elliptical Billiard With the Hooke'S Potential”, 42, no. 1, 2015, 1–9