93 citations to https://www.mathnet.ru/rus/rm4566
  1. Christiane Rousseau, Huaiping Zhu, “PP-graphics with a nilpotent elliptic singularity in quadratic systems and Hilbert's 16th problem”, Journal of Differential Equations, 196:1 (2004), 169  crossref
  2. D. Novikov, S. Yu. Yakovenko, “Quasialgebraicity of Picard–Vessiot fields”, Mosc. Math. J., 3:2 (2003), 551–591  mathnet  crossref  mathscinet  zmath  elib
  3. F. Dumortier, A. Guzmán, C. Rousseau, “Finite cyclicity of elementary graphics surrounding a focus or center in quadratic systems”, Qual Th Dyn Syst, 3:1 (2002), 123  crossref  mathscinet  zmath
  4. А. О. Ремизов, “Неявные дифференциальные уравнения и векторные поля с неизолированными особыми точками”, Матем. сб., 193:11 (2002), 105–124  mathnet  crossref  mathscinet  zmath; A. O. Remizov, “Implicit differential equations and vector fields with non-isolated singular points”, Sb. Math., 193:11 (2002), 1671–1690  crossref  isi  elib
  5. Stefan Siegmund, “Normal Forms for Nonautonomous Differential Equations”, Journal of Differential Equations, 178:2 (2002), 541  crossref
  6. Huaiping Zhu, Christiane Rousseau, “Finite Cyclicity of Graphics with a Nilpotent Singularity of Saddle or Elliptic Type”, Journal of Differential Equations, 178:2 (2002), 325  crossref
  7. Dumortier F. Ilyashenko Y. Rousseau C., “Normal Forms Near a Saddle-Node and Applications to Finite Cyclicity of Graphics”, Ergod. Theory Dyn. Syst., 22:Part 3 (2002), 783–818  crossref  isi
  8. Ilyashenko Y., “Centennial History of Hilbert's 16th Problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354  crossref  isi
  9. Louis-Sébastein Guimond, Christiane Rousseau, “Finite cyclicity of finite codimension nondegerate homoclinic loops with real eigenvalues in ℝ3 ”, Qual Th Dyn Syst, 2:1 (2001), 151  crossref  mathscinet  zmath
  10. В. Ю. Калошин, “Проблема Гильберта–Арнольда и оценка цикличности полициклов на плоскости и в пространстве”, Функц. анализ и его прил., 35:2 (2001), 78–81  mathnet  crossref  mathscinet  zmath; V. Y. Kaloshin, “The Hilbert–Arnold Problem and an Estimate of the Cyclicity of Polycycles on the Plane and in Space”, Funct. Anal. Appl., 35:2 (2001), 146–147  crossref  isi  elib
Предыдущая
1
2
3
4
5
6
7
8
9
10
Следующая