23 citations to https://www.mathnet.ru/rus/mzm9284
-
G. Cardone, A. Khrabustovskyi, “Spectrum of a singularly perturbed periodic thin waveguide”, J. Math. Anal. Appl., 454:2 (2017), 673–694
-
S. A. Nazarov, “Asymptotics of Eigenvalues in Spectral Gaps Under Regular Perturbations of Walls of a Periodic Waveguide”, J Math Sci, 226:4 (2017), 402
-
G. Raikov, “Spectral asymptotics for waveguides with perturbed periodic twisting”, J. Spectr. Theory, 6:2 (2016), 331–372
-
A. Khrabustovskyi, M. Plum, “Spectral properties of an elliptic operator with double-contrast coefficients near a hyperplane”, Asymptotic Anal., 98:1-2 (2016), 91–130
-
D. I. Borisov, “Creation of spectral bands for a periodic domain with small windows”, Russ. J. Math. Phys., 23:1 (2016), 19–34
-
S. A. Nazarov, J. Taskinen, “Spectral gaps for periodic piezoelectric waveguides”, Z. Angew. Math. Phys., 66:6 (2015), 3017–3047
-
D. I. Borisov, “On the band spectrum of a Schrödinger operator in a periodic system of domains coupled by small windows”, Russ. J. Math. Phys., 22:2 (2015), 153–160
-
P. Exner, H. Kovařík, Quantum waveguides, Theoretical and Mathematical Physics, Springer-Verlag, Cham, 2015, xxii+382 pp.
-
D. I. Borisov, “Perturbation of Threshold of Essential Spectrum for Waveguides with Windows. II: Asymptotics”, J Math Sci, 210:5 (2015), 590
-
С. А. Назаров, “Раскрытие лакуны вокруг заданной точки спектра цилиндрического волновода путем пологих периодических возмущений стенок”, Математические вопросы теории распространения волн. 43, Зап. научн. сем. ПОМИ, 422, ПОМИ, СПб., 2014, 90–130 ; S. A. Nazarov, “Gap opening around a given point of the spectrum of a cylindrical waveguide by means of gentle periodic perturbation of walls”, J. Math. Sci. (N. Y.), 206:3 (2015), 288–314