44 citations to https://www.mathnet.ru/rus/im8470
-
С. Ю. Доброхотов, В. Е. Назайкинский, “Лагранжевы многообразия и эффективные формулы
для коротковолновых асимптотик в окрестности точки
возврата каустики”, Матем. заметки, 108:3 (2020), 334–359 ; S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Lagrangian Manifolds and Efficient Short-Wave Asymptotics in a Neighborhood of a Caustic Cusp”, Math. Notes, 108:3 (2020), 318–338
-
S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. A. Tolchennikov, “Uniform formulas for the asymptotic solution of a linear pseudodifferential equation describing water waves generated by a localized source”, Russ. J. Math. Phys., 27:2 (2020), 185–191
-
С. Ю. Доброхотов, В. Е. Назайкинский, “Эффективные асимптотики в задачах о распространении волн, порожденных локализованными источниками, в линейных многомерных неоднородных и дисперсных средах”, Ж. вычисл. матем. и матем. физ., 60:8 (2020), 1394–1407 ; S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Efficient asymptotics in problems on the propagation of waves generated by localized sources in linear multidimensional inhomogeneous and dispersive media”, Comput. Math. Math. Phys., 60:8 (2020), 1348–1360
-
S Dobrokhotov, V Nazaikinskii, “Nonstandard caustics for localized solutions of the 2d shallow water equations with applications to wave propagation and run-up on a shallow beach”, J. Phys.: Conf. Ser., 1474:1 (2020), 012013
-
S. Yu. Dobrokhotov, A. A. Tolchennikov, “Solution of the two-dimensional Dirac equation with a linear potential and a localized initial condition”, Russ. J. Math. Phys., 26:2 (2019), 139–151
-
С. А. Сергеев, “Асимптотические решения задачи Коши с локализованными начальными
данными для разностной схемы, отвечающей одномерному волновому
уравнению”, Матем. заметки, 106:5 (2019), 744–760 ; S. A. Sergeev, “Asymptotic Solutions of the Cauchy Problem with Localized Initial Data for a Finite-Difference Scheme Corresponding to the One-Dimensional Wave Equation”, Math. Notes, 106:5 (2019), 800–813
-
P. S. Petrov, S. A. Sergeev, A. A. Tolchennikov, “On the application of asymptotic formulae based on the modified maslov canonical operator to the modeling of acoustic pulses propagation in three-dimensional shallow-water waveguides”, Acoust. Phys., 65:6 (2019), 716–723
-
S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Waves on the free surface described by linearized equations of hydrodynamics with localized right-hand sides”, Russ. J. Math. Phys., 25:1 (2018), 1–16
-
A. Anikin, S. Dobrokhotov, V. Nazaikinskii, M. Rouleux, “Semi-classical Green functions”, 2018 Days on Diffraction (DD), International Conference on Days on Diffraction (DD) (St Petersburg, RUSSIA, JUN 04–08, 2018), eds. O. Motygin, A. Kiselev, L. Goray, A. Kazakov, A. Kirpichnikova, M. Perel, IEEE, 2018, 17–23
-
S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Asymptotic localized solutions of the shallow water equations over a nonuniform bottom”, Proceedings of the 44Th International Conference “Applications of Mathematics in Engineering and Economics”, AIP Conf. Proc., 2048, Amer. Inst. Phys., 2018, 040026