44 citations to https://www.mathnet.ru/rus/im8470
-
Ю. А. Кордюков, И. А. Тайманов, “Квазиклассическое приближение монопольных гармоник”, Матем. заметки, 114:6 (2023), 848–862 ; Yu. A. Kordyukov, I. A. Taimanov, “Quasi-Classical Approximation of Monopole Harmonics”, Math. Notes, 114:6 (2023), 1277–1288
-
Ilya Bogaevskii, Michel Rouleux, 2023 Days on Diffraction (DD), 2023, 12
-
V. L. Chernyshev, V. E. Nazaikinskii, A. V. Tsvetkova, “Lattice Equations and Semiclassical Asymptotics”, Russ. J. Math. Phys., 30:2 (2023), 152
-
A. S. Demidov, Equations of Mathematical Physics, 2023, 91
-
В. Е. Назайкинский, “Канонический оператор на проколотых лагранжевых многообразиях и формула коммутации с псевдодифференциальными операторами: локальная теория”, Матем. заметки, 112:5 (2022), 733–751 ; V. E. Nazaikinskii, “Canonical Operator on Punctured Lagrangian Manifolds and Commutation with Pseudodifferential Operators: Local Theory”, Math. Notes, 112:5 (2022), 709–725
-
S. Yu. Dobrokhotov, S. A. Sergeev, “Asymptotics of the solution of the Cauchy problem with localized initial conditions for a wave type equation with time dispersion. I. Basic structures”, Russ. J. Math. Phys., 29:2 (2022), 149
-
A. I. Klevin, “New integral representations for the Maslov canonical operator on an isotropic manifold with a complex germ”, Russ. J. Math. Phys., 29:2 (2022), 183
-
V. E. Nazaikinskii, A. Yu. Savin, “On semiclassical asymptotics for nonlocal equations”, Russ. J. Math. Phys., 29:4 (2022), 568
-
A. I. Klevin, “Uniform asymptotics in the form of airy functions for bound states of the quantum anisotropic Kepler problem localized in a neighborhood of annuli”, Russ. J. Math. Phys., 29:1 (2022), 47
-
V. E. Nazaikinskii, A. A. Tolchennikov, “Constructive implementation of semiclassical asymptotic formulas in a neighborhood of a generic caustic cusp”, Russ. J. Math. Phys., 29:4 (2022), 558