141 citations to https://www.mathnet.ru/rus/im2021
-
В. А. Гриценко, В. В. Никулин, “Примеры решеточно-поляризованных $K3$-поверхностей с автоморфным дискриминантом и лоренцевы алгебры Каца–Муди”, Тр. ММО, 78, № 1, МЦНМО, М., 2017, 89–100 ; Valery Gritsenko, Viacheslav V. Nikulin, “Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac–Moody algebras”, Trans. Moscow Math. Soc., 78 (2017), 75–83
-
ABHINAV KUMAR, MASATO KUWATA, “ELLIPTIC K3 SURFACES ASSOCIATED WITH THE PRODUCT OF TWO ELLIPTIC CURVES: MORDELL–WEIL LATTICES AND THEIR FIELDS OF DEFINITION”, Nagoya Math. J., 228 (2017), 124
-
KeFeng Liu, Yang Shen, “Boundedness of the period maps and global Torelli theorem”, Sci. China Math., 60:6 (2017), 1029
-
Tathagata Sengupta, Analytic and Algebraic Geometry, 2017, 239
-
Federica Galluzzi, “Cubic fourfolds containing a plane and K3 surfaces of Picard rank two”, Geom Dedicata, 186:1 (2017), 103
-
Lara B. Anderson, Xin Gao, James Gray, Seung-Joo Lee, “Fibrations in CICY threefolds”, J. High Energ. Phys., 2017:10 (2017)
-
В. В. Никулин, “Вырождения кэлеровых K3-поверхностей с конечными симплектическими группами автоморфизмов. II”, Изв. РАН. Сер. матем., 80:2 (2016), 81–124 ; V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. II”, Izv. Math., 80:2 (2016), 359–402
-
Nikulin V.V., “Kahlerian K3 Surfaces and Niemeier Lattices, II”, Development of Moduli Theory - Kyoto 2013, Advanced Studies in Pure Mathematics, 69, ed. Fujino O. Kondo S. Moriwaki A. Saito M. Yoshioka K., Math Soc Japan, 2016, 421–471
-
Garbagnati A., Sarti A., “Kummer surfaces and K3 surfaces with $(\mathbb{Z} /2\mathbb{Z} )^4$ symplectic action”, Rocky Mt. J. Math., 46:4 (2016), 1141–1205
-
Arthur Baragar, “Automorphisms of surfaces in a class of Wehler K3 surfaces with Picard number $4$”, Rocky Mountain J. Math., 46:2 (2016)