144 citations to https://www.mathnet.ru/rus/im2021
  1. Dino FESTI, Davide Cesare VENIANI, “Counting elliptic fibrations on K3 surfaces”, J. Math. Soc. Japan, 75:4 (2023)  crossref
  2. Keita Kanno, Taizan Watari, “W = 0 Complex Structure Moduli Stabilization on CM-type K3 $\times $ K3 Orbifolds: Arithmetic, Geometry and Particle Physics”, Commun. Math. Phys., 398:2 (2023), 703  crossref
  3. Taiki Takatsu, “On the geometry of singular K3 surfaces with discriminant 3, 4 and 7”, Kodai Math. J., 45:1 (2022)  crossref
  4. Mezzedimi G., “K3 Surfaces of Zero Entropy Admitting An Elliptic Fibration With Only Irreducible Fibers”, J. Algebra, 587 (2021), 344–389  crossref  isi
  5. Valloni D., “Complex Multiplication and Brauer Groups of K3 Surfaces”, Adv. Math., 385 (2021), 107772  crossref  isi
  6. Wenzhe Yang, “K3 mirror symmetry, Legendre family and Deligne's conjecture for the Fermat quartic”, Nuclear Physics B, 963 (2021), 115303  crossref
  7. Cesar Fierro Cota, Albrecht Klemm, Thorsten Schimannek, “State counting on fibered CY 3-folds and the non-Abelian weak gravity conjecture”, J. High Energ. Phys., 2021:5 (2021)  crossref
  8. Zhuang He, Lei Yang, “Birational Geometry of Blow-ups of Projective Spaces Along Points and Lines”, International Mathematics Research Notices, 2021:9 (2021), 6442  crossref
  9. Viacheslav V. Nikulin, “Some Examples of K3 Surfaces with Infinite Automorphism Group which Preserves an Elliptic Pencil”, Матем. заметки, 108:4 (2020), 542–549  mathnet  isi  scopus; Viacheslav V. Nikulin, “Some Examples of K3 Surfaces with Infinite Automorphism Group which Preserves an Elliptic Pencil”, Math. Notes, 108:4 (2020), 542–549  mathnet  crossref
  10. В. А. Краснов, “Вещественные куммеровы поверхности”, Изв. РАН. Сер. матем., 83:1 (2019), 75–118  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. A. Krasnov, “Real Kummer surfaces”, Izv. Math., 83:1 (2019), 65–103  crossref  isi
Предыдущая
1
2
3
4
5
15
Следующая