388 citations to https://www.mathnet.ru/rus/im1677
  1. Matthias Schütt, “K3 surfaces with non-symplectic automorphisms of 2-power order”, Journal of Algebra, 323:1 (2010), 206  crossref
  2. Ron Livné, Matthias Schütt, Noriko Yui, “The modularity of K3 surfaces with non-symplectic group actions”, Math. Ann, 348:2 (2010), 333  crossref
  3. Jan Hendrik Bruinier, Oliver Stein, “The Weil representation and Hecke operators for vector valued modular forms”, Math. Z., 264:2 (2010), 249  crossref
  4. Viacheslav V. Nikulin, Progress in Mathematics, 270, Algebra, Arithmetic, and Geometry, 2010, 439  crossref
  5. В. А. Краснов, “О многообразии Фано одного класса вещественных четырехмерных кубик”, Матем. заметки, 85:5 (2009), 711–720  mathnet  crossref  mathscinet  zmath; V. A. Krasnov, “On the Fano Variety of a Class of Real Four-Dimensional Cubics”, Math. Notes, 85:5 (2009), 682–689  crossref  isi  elib
  6. Schütt M., “CM newforms with rational coefficients”, Ramanujan J., 19:2 (2009), 187–205  crossref  mathscinet  zmath  isi
  7. Macri E., Stellari P., “Infinitesimal Derived Torelli Theorem for K3 Surfaces (with an Appendix by Sukhendu Mehrotra)”, Internat Math Res Notices, 2009, no. 17, 3190  crossref  mathscinet  zmath  isi
  8. Vijay Kumar, Washington Taylor, “Freedom and constraints in the K3 landscape”, J High Energy Phys, 2009:5 (2009), 066  crossref  mathscinet  adsnasa  isi
  9. Finashin, S, “On the deformation chirality of real cubic fourfolds”, Compositio Mathematica, 145:5 (2009), 1277  crossref  mathscinet  zmath  isi
  10. Huybrechts D., “The Global Torelli Theorem: classical, derived, twisted”, Algebraic Geometry, Proceedings of Symposia in Pure Mathematics, 80, no. 1- 2, 2009, 235–258  isi
Предыдущая
1
24
25
26
27
28
29
30
39
Следующая