99 citations to https://www.mathnet.ru/rus/im1573
-
В. С. Матвеев, “Интегрируемые гамильтоновы системы с двумя степенями свободы.
Топологическое строение насыщенных окрестностей точек типа
фокус-фокус и седло-седло”, Матем. сб., 187:4 (1996), 29–58 ; V. S. Matveev, “Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type”, Sb. Math., 187:4 (1996), 495–524
-
Е. Н. Селиванова, “Траекторные изоморфизмы лиувиллевых систем на двумерном торе”, Матем. сб., 186:10 (1995), 141–160 ; E. N. Selivanova, “Orbital isomorphisms of Liouville systems on a two-dimensional torus”, Sb. Math., 186:10 (1995), 1531–1549
-
А. В. Болсинов, А. Т. Фоменко, “Траекторная классификация геодезических потоков двумерных эллипсоидов. Задача Якоби траекторно эквивалентна интегрируемому случаю Эйлера в динамике твердого тела”, Функц. анализ и его прил., 29:3 (1995), 1–15 ; A. V. Bolsinov, A. T. Fomenko, “Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent
to the Integrable Euler Case in Rigid Body Dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160
-
А. В. Болсинов, А. Т. Фоменко, “Траекторные инварианты интегрируемых гамильтоновых систем. Случай простых систем. Траекторная классификация систем типа Эйлера в динамике твердого тела”, Изв. РАН. Сер. матем., 59:1 (1995), 65–102 ; A. V. Bolsinov, A. T. Fomenko, “Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics”, Izv. Math., 59:1 (1995), 63–100
-
К. Н. Мишачев, “Гамильтоновы зацепления в трехмерных многообразиях”, Изв. РАН. Сер. матем., 59:6 (1995), 95–106 ; K. N. Mishachev, “Hamiltonian links in three-dimensional manifolds”, Izv. Math., 59:6 (1995), 1193–1205
-
D. Bättig, A. M. Bloch, J.-C. Guillot, T. Kappeler, “On the symplectic structure of the phase space for periodic
KdV, Toda, and defocusing NLS”, Duke Math. J., 79:3 (1995)
-
В. В. Калашников, “О типичности боттовских интегрируемых гамильтоновых систем”, Матем. сб., 185:1 (1994), 107–120 ; V. V. Kalashnikov, “On genericity of integrable Hamiltonian systems of Bott type”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 87–99
-
А. В. Болсинов, А. Т. Фоменко, “Траекторная эквивалентность интегрируемых гамильтоновых систем с двумя степенями свободы. Теорема классификации. I”, Матем. сб., 185:4 (1994), 27–80 ; A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. I”, Russian Acad. Sci. Sb. Math., 81:2 (1995), 421–465
-
А. В. Болсинов, А. Т. Фоменко, “Траекторная эквивалентность интегрируемых гамильтоновых систем с двумя степенями свободы. Теорема классификации. II”, Матем. сб., 185:5 (1994), 27–78 ; A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. II”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 21–63
-
Л. М. Лерман, Я. Л. Уманский, “Классификация четырехмерных интегрируемых гамильтоновых систем и пуассоновских действий $\mathbb R^2$ в расширенных окрестностях простых особых точек. II”, Матем. сб., 184:4 (1993), 105–138 ; L. M. Lerman, Ya. L. Umanskii, “Classification of four-dimensional integrable Hamiltonian systems and Poisson actions of
$\mathbb{R}^2$ in extended neighborhoods of simple singular points. II”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 479–506