100 citations to https://www.mathnet.ru/rus/im1573
-
И. М. Никонов, “Высотные атомы с транзитивной на вершинах группой симметрий”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 6, 17–25 ; I. M. Nikonov, “Height atoms whose symmetry groups act transitively on their vertex sets”, Moscow University Mathematics Bulletin, 71:6 (2016), 233–241
-
Д. А. Федосеев, А. Т. Фоменко, “Некомпактные особенности интегрируемых динамических систем”, Фундамент. и прикл. матем., 21:6 (2016), 217–243 ; D. A. Fedoseev, A. T. Fomenko, “Noncompact bifurcations of integrable dynamic systems”, J. Math. Sci., 248:6 (2020), 810–827
-
Victoria V. Fokicheva, Anatoly T. Fomenko, Studies in Systems, Decision and Control, 69, Advances in Dynamical Systems and Control, 2016, 13
-
Rasoul Akbarzadeh, Ghorbanali Haghighatdoost, “The Topology of Liouville Foliation for the Borisov–Mamaev–Sokolov Integrable Case on the Lie Algebra $so(4)$”, Regul. Chaotic Dyn., 20:3 (2015), 317–344
-
М. П. Харламов, П. Е. Рябов, “Топологический атлас волчка Ковалевской в двойном поле”, Фундамент. и прикл. матем., 20:2 (2015), 185–230 ; M. P. Kharlamov, P. E. Ryabov, “Topological atlas of the Kovalevskaya top in a double field”, J. Math. Sci., 223:6 (2017), 775–809
-
Д. А. Федосеев, “Бифуркационные диаграммы натуральных гамильтоновых систем на многообразиях Бертрана”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2015, № 1, 62–65 ; D. A. Fedoseev, “Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds”, Moscow University Mathematics Bulletin, 70:1 (2015), 44–47
-
Д. В. Новиков, “Топологические особенности интегрируемого случая Соколова на алгебре Ли $\mathrm{so}(3,1)$”, Матем. сб., 205:8 (2014), 41–66 ; D. V. Novikov, “Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{so}(3,1)$”, Sb. Math., 205:8 (2014), 1107–1132
-
Fomenko A.T., Konyaev A.Yu., “Geometry, Dynamics and Different Types of Orbits”, J. Fixed Point Theory Appl., 15:1 (2014), 49–66
-
О. А. Загрядский, “Соотношение классов Бертрана, Бонне и Таннери”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2014, № 6, 62–64 ; O. A. Zagryadskii, “The relations between the Bertrand, Bonnet, and Tannery classes”, Moscow University Mathematics Bulletin, 69:6 (2014), 277–279
-
D. P. Ilyutko, V. O. Manturov, I. M. Nikonov, “Parity in knot theory and graph-links”, J Math Sci, 193:6 (2013), 809