108 citations to https://www.mathnet.ru/rus/im1086
  1. M. A. Tuzhilin, “Invariants of four- and three-dimensional singularities of integrable systems”, Dokl. Math., 93:2 (2016), 186  crossref
  2. N.N. Martynchuk, “Semi-local Liouville equivalence of complex Hamiltonian systems defined by rational Hamiltonian”, Topology and its Applications, 191 (2015), 119  crossref
  3. П. Е. Рябов, А. Ю. Савушкин, “Фазовая топология волчка Ковалевской – Соколова”, Нелинейная динам., 11:2 (2015), 287–317  mathnet
  4. В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507  crossref  isi
  5. Fomenko A.T. Nikolaenko S.S., “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. Phys., 87 (2015), 115–133  crossref  mathscinet  zmath  isi  elib  scopus
  6. V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682  crossref
  7. С. С. Николаенко, “Топологическая классификация систем Чаплыгина в динамике твердого тела в жидкости”, Матем. сб., 205:2 (2014), 75–122  mathnet  crossref  mathscinet  zmath  adsnasa  elib; S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268  crossref  isi
  8. M.P. Kharlamov, “Phase topology of one system with separated variables and singularities of the symplectic structure”, Journal of Geometry and Physics, 2014  crossref
  9. В. В. Фокичева, “Классификация биллиардных движений в областях, ограниченных софокусными параболами”, Матем. сб., 205:8 (2014), 139–160  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. V. Fokicheva, “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221  crossref  isi
  10. В. В. Фокичева, “Описание особенностей системы бильярда в областях, ограниченных софокусными эллипсами или гиперболами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2014, № 4, 18–27  mathnet  mathscinet; V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow University Mathematics Bulletin, 69:4 (2014), 148–158  crossref
Предыдущая
1
4
5
6
7
8
9
10
11
Следующая