108 citations to https://www.mathnet.ru/rus/im1086
  1. В. А. Трифонова, “Высотные частично симметричные атомы”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2018, № 2, 33–41  mathnet  mathscinet  zmath; V. A. Trifonova, “Partially symmetric height atoms”, Moscow University Mathematics Bulletin, 73:2 (2018), 71–78  crossref  isi
  2. В. В. Ведюшкина, А. Т. Фоменко, И. С. Харчева, “Моделирование невырожденных бифуркаций замыканий решений интегрируемых систем с двумя степенями свободы интегрируемыми топологическими биллиардами”, Докл. РАН, 479:6 (2018), 607–610  mathnet  crossref  zmath  elib; V. V. Vedyushkina, A. T. Fomenko, I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176  crossref  zmath  isi  scopus
  3. В. В. Ведюшкина, “Инварианты Фоменко–Цишанга топологических бильярдов, ограниченных софокусными параболами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2018, № 4, 22–28  mathnet  mathscinet  zmath; V. V. Vedyushkina, “Fomenko–Zieschang invariants of topological billiards bounded by confocal parabolas”, Moscow University Mathematics Bulletin, 73:4 (2018), 150–155  crossref  isi
  4. В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727  crossref  isi
  5. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733  crossref  isi
  6. E. A. Kudryavtseva, “Continuous orbital invariants of integrable Hamiltonian systems”, Lobachevskii J Math, 38:6 (2017), 1027  crossref
  7. С. С. Николаенко, “Топологическая классификация интегрируемого случая Горячева в динамике твердого тела”, Матем. сб., 207:1 (2016), 123–150  mathnet  crossref  mathscinet  zmath  adsnasa  elib; S. S. Nikolaenko, “Topological classification of the Goryachev integrable case in rigid body dynamics”, Sb. Math., 207:1 (2016), 113–139  crossref  isi  elib
  8. Е. О. Кантонистова, “Топологическая классификация интегрируемых гамильтоновых систем на поверхностях вращения в потенциальном поле”, Матем. сб., 207:3 (2016), 47–92  mathnet  crossref  mathscinet  zmath  adsnasa  elib; E. O. Kantonistova, “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399  crossref  isi
  9. Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65  mathnet  crossref  mathscinet  zmath
  10. И. М. Никонов, “Высотные атомы с транзитивной на вершинах группой симметрий”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 6, 17–25  mathnet  mathscinet; I. M. Nikonov, “Height atoms whose symmetry groups act transitively on their vertex sets”, Moscow University Mathematics Bulletin, 71:6 (2016), 233–241  crossref  isi
Предыдущая
1
3
4
5
6
7
8
9
11
Следующая