25 citations to https://www.mathnet.ru/rus/faa894
-
А. Т. Фоменко, В. В. Ведюшкина, “Биллиарды и интегрируемые системы”, УМН, 78:5(473) (2023), 93–176 ; A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954
-
Viktoriya Trifonova, “One more proof of Vassiliev's conjecture”, J. Knot Theory Ramifications, 32:04 (2023)
-
В. В. Ведюшкина, А. И. Скворцов, “Топология интегрируемого бильярда в эллипсе на плоскости Минковского с гуковским потенциалом”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2022, № 1, 8–19 ; V. V. Vedyushkina, A. I. Skvortsov, “Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential”, Moscow University Mathematics Bulletin, 77:1 (2022), 7–19
-
С. Е. Пустовойтов, “Топологический анализ биллиарда, ограниченного софокусными квадриками, в потенциальном поле”, Матем. сб., 212:2 (2021), 81–105 ; S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Sb. Math., 212:2 (2021), 211–233
-
В. А. Трифонова, “Критерии высотности атома”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 3, 12–24 ; V. A. Trifonova, “Criteria for the height of an atom”, Moscow University Mathematics Bulletin, 75:3 (2020), 102–116
-
А. А. Ошемков, М. А. Тужилин, “Интегрируемые возмущения седловых особенностей ранга 0 интегрируемых гамильтоновых систем”, Матем. сб., 209:9 (2018), 102–127 ; A. A. Oshemkov, M. A. Tuzhilin, “Integrable perturbations of saddle singularities of rank 0 of integrable Hamiltonian systems”, Sb. Math., 209:9 (2018), 1351–1375
-
Д. С. Тимонина, “Лиувиллева классификация интегрируемых геодезических потоков в потенциальном поле на двумерных многообразиях вращения: торе и бутылке Клейна”, Матем. сб., 209:11 (2018), 103–136 ; D. S. Timonina, “Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle”, Sb. Math., 209:11 (2018), 1644–1676
-
Д. С. Тимонина, “Лиувиллева классификация интегрируемых геодезических потоков на торе вращения в потенциальном поле”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2017, № 3, 35–43 ; D. S. Timonina, “Liouville classification of integrable geodesic flows on a torus of revolution in a potential field”, Moscow University Mathematics Bulletin, 72:3 (2017), 121–128
-
D. S. Timonina, “Topological classification of integrable geodesic flows in a potential field on the torus of revolution”, Lobachevskii J Math, 38:6 (2017), 1108
-
Е. О. Кантонистова, “Топологическая классификация интегрируемых гамильтоновых систем на поверхностях вращения в потенциальном поле”, Матем. сб., 207:3 (2016), 47–92 ; E. O. Kantonistova, “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399