54 citations to https://www.mathnet.ru/rus/faa2123
-
Xue Wang, Dianlou Du, “A nonlocal finite-dimensional integrable system related to the nonlocal nonlinear Schrödinger equation hierarchy”, Int. J. Geom. Methods Mod. Phys., 21:02 (2024)
-
Alexey V. Bolsinov, Andrey Yu. Konyaev, Vladimir S. Matveev, “Applications of Nijenhuis Geometry V: Geodesic Equivalence and Finite-Dimensional Reductions of Integrable Quasilinear Systems”, J Nonlinear Sci, 34:2 (2024)
-
Allan P. Fordy, Qing Huang, “Stationary coupled KdV hierarchies and related Poisson structures”, Journal of Geometry and Physics, 197 (2024), 105079
-
Victor M. Buchstaber, Alexander V. Mikhailov, “KdV hierarchies and quantum Novikov's equations”, Open Commun. in Nonlin. Math. Physics, 2024, no. 1, 1–36
-
Allan P Fordy, “Scaling symmetry reductions of coupled KdV systems”, J. Phys. A: Math. Theor., 57:45 (2024), 455205
-
Allan P. Fordy, Qing Huang, “Stationary Flows Revisited”, SIGMA, 19 (2023), 015, 34 pp.
-
Maciej Błaszak, Błażej M. Szablikowski, Krzysztof Marciniak, “Stäckel representations of stationary Kdv systems”, Reports on Mathematical Physics, 92:3 (2023), 323
-
Дянь-Лоу Ду, Сюэ Ван, “Новые конечномерные гамильтоновы системы со смешанной пуассоновой структурой для уравнения КдФ”, ТМФ, 211:3 (2022), 361–374 ; Dianlou Du, Xue Wang, “A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation”, Theoret. and Math. Phys., 211:3 (2022), 745–757
-
О. И. Мохов, Н. А. Стрижова, “Интегрируемость по Лиувиллю редукции уравнений ассоциативности на множество стационарных точек интеграла в случае трех примарных полей”, УМН, 74:2(446) (2019), 191–192 ; O. I. Mokhov, N. A. Strizhova, “Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields”, Russian Math. Surveys, 74:2 (2019), 369–371
-
Roberto Camassa, Gregorio Falqui, Giovanni Ortenzi, Marco Pedroni, “On the Geometry of Extended Self-Similar Solutions of the Airy Shallow Water Equations”, SIGMA, 15 (2019), 087, 17 pp.