54 citations to https://www.mathnet.ru/rus/faa2123
  1. Zhijun Qiao, “Algebraic structure of the operator related to stationary systems”, Physics Letters A, 206:5-6 (1995), 347  crossref
  2. Q P Liu, “On the constrained modified KP hierarchy”, Inverse Problems, 11:1 (1995), 205  crossref
  3. Maciej Błaszak, “Bi-Hamiltonian field Garnier system”, Physics Letters A, 174:1-2 (1993), 85  crossref
  4. Marek Antonowicz, Stefan Rauch-Wojciechowski, “How to construct finite-dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials”, Journal of Mathematical Physics, 33:6 (1992), 2115  crossref
  5. S Rauch-Wojciechowski, “Newton representation for stationary flows of the KdV hierarchy”, Physics Letters A, 170:2 (1992), 91  crossref
  6. O Ragnisco, S Rauch-Wojciechowski, “Restricted flows of the AKNS hierarchy”, Inverse Problems, 8:2 (1992), 245  crossref
  7. M. Bruschi, O. Ragnisco, P.M. Santini, Tu Gui-Zhang, “Integrable symplectic maps”, Physica D: Nonlinear Phenomena, 49:3 (1991), 273  crossref
  8. Marek Antonowicz, Stefan Rauch-Wojciechowski, “Constrained flows of integrable PDEs and bi-Hamiltonian structure of the Garnier system”, Physics Letters A, 147:8-9 (1990), 455  crossref
  9. О. И. Мохов, “О гамильтоновости произвольной эволюционной системы на множестве стационарных точек ее интеграла”, Изв. АН СССР. Сер. матем., 51:6 (1987), 1345–1352  mathnet  mathscinet  zmath; O. I. Mokhov, “On the Hamiltonian property of an arbitrary evolution system on the set of stationary points of its integral”, Math. USSR-Izv., 31:3 (1988), 657–664  crossref
  10. Marek Antonowicz, Allan P. Fordy, Stefan Wojciechowski, “Integrable stationary flows: Miura maps and bi-hamiltonian structures”, Physics Letters A, 124:3 (1987), 143  crossref
Предыдущая
1
2
3
4
5
6
Следующая