- A Zuevsky, “Lie-algebraic symmetries of generalized Davey-Stewartson equations”, J. Phys.: Conf. Ser., 532, 2014, 012030
- M. V. Saveliev, “On the integrability problem of a continuous Toda system”, Theor Math Phys, 92, № 3, 1992, 1024
- A Zuevsky, “Continual Lie algebras and noncommutative counterparts of exactly solvable models”, J. Phys. A: Math. Gen., 37, № 2, 2004, 537
- S. Duplij, “Generalized Duality, Hamiltonian Formalism and New Brackets”, Z. mat. fiz. anal. geom., 10, № 2, 2014, 189
- Ignatios Antoniadis, Jean-Pierre Derendinger, P. Marios Petropoulos, Konstantinos Siampos, “Heisenberg symmetry and hypermultiplet manifolds”, Nuclear Physics B, 905, 2016, 293
- Kanehisa Takasaki, “Dressing operator approach to Moyal algebraic deformation of selfdual gravity”, Journal of Geometry and Physics, 14, № 2, 1994, 111
- M. I. Golenishcheva-Kutuzova, D. R. Lebedev, “ℤ-Graded Trigonometric Lie subalgebras in $\hat A_\infty ,\hat B_\infty ,\hat C_\infty $ , and $\hat D_\infty $ and their vertex operator representationsand their vertex operator representations”, Funct Anal Its Appl, 27, № 1, 1993, 10
- L Zhang, L Huang, X M Qiu, “Josephson junction dynamics in the presence of microresistors and an AC drive”, J. Phys.: Condens. Matter, 7, № 2, 1995, 353
- A. Degasperis, D. Lebedev, M. Olshanetsky, S. Pakuliak, A. Perelomov, P. M. Santini, “Generalized intermediate long-wave hierarchy in zero-curvature representation with noncommutative spectral parameter”, Journal of Mathematical Physics, 33, № 11, 1992, 3783
- Carlos Castro, Jerzy Plebański, “The generalized Moyal–Nahm and continuous Moyal–Toda equations”, Journal of Mathematical Physics, 40, № 8, 1999, 3738