- M. Mendoza, P. A. Schulz, “Evolution of wave-function statistics from closed quantum billiards up to the open quantum dot limit: Application to the measurement of dynamical properties through imaging experiments”, Phys. Rev. B, 74, № 3, 2006, 035304
- Olof Bengtsson, Johan Larsson, Karl-Fredrik Berggren, “Emulation of quantum mechanical billiards by electrical resonance circuits”, Phys. Rev. E, 71, № 5, 2005, 056206
- J.-B. Gros, U. Kuhl, O. Legrand, F. Mortessagne, “Lossy chaotic electromagnetic reverberation chambers: Universal statistical behavior of the vectorial field”, Phys. Rev. E, 93, № 3, 2016, 032108
- B. Wahlstrand, I. I. Yakimenko, K.-F. Berggren, “Wave transport and statistical properties of an open non-Hermitian quantum dot with parity-time symmetry”, Phys. Rev. E, 89, № 6, 2014, 062910
- Michael Barth, Hans-Jürgen Stöckmann, “Current and vortex statistics in microwave billiards”, Phys. Rev. E, 65, № 6, 2002, 066208
- I. Rotter, “Effective Hamiltonian and unitarity of theSmatrix”, Phys. Rev. E, 68, № 1, 2003, 016211
- A J Taylor, M R Dennis, “Geometry and scaling of tangled vortex lines in three-dimensional random wave fields”, J. Phys. A: Math. Theor., 47, № 46, 2014, 465101
- J Barthélemy, O Legrand, F Mortessagne, “Inhomogeneous resonance broadening and statistics of complex wave functions in a chaotic microwave cavity”, Europhys. Lett., 70, № 2, 2005, 162
- Piet W. Brouwer, “Wave function statistics in open chaotic billiards”, Phys. Rev. E, 68, № 4, 2003, 046205
- O. Xeridat, C. Poli, O. Legrand, F. Mortessagne, P. Sebbah, “Quasimodes of a chaotic elastic cavity with increasing local losses”, Phys. Rev. E, 80, № 3, 2009, 035201