50 citations to https://www.mathnet.ru/eng/dan9334
  1. I. Yu. Cherdantsev, R. A. Sharipov, “Finite-gap solutions of the Bullough–Dodd–Zhiber–Shabat equation”, Theoret. and Math. Phys., 82:1 (1990), 108–11  mathnet  crossref  mathscinet  zmath  isi
  2. I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications”, Russian Math. Surveys, 44:2 (1989), 145–225  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  3. S. M. Natanzon, “Prymians of real curves and their applications to the effectivization of Schrödinger operators”, Funct. Anal. Appl., 23:1 (1989), 33–45  mathnet  crossref  mathscinet  zmath  isi
  4. P. G. Grinevich, S. P. Novikov, “Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. I. Energies below the ground state”, Funct. Anal. Appl., 22:1 (1988), 19–27  mathnet  crossref  mathscinet  zmath  isi
  5. S. M. Natanzon, “Nonsingular finite-zone two-dimensional Schrödinger operators and prymians of real curves”, Funct. Anal. Appl., 22:1 (1988), 68–70  mathnet  crossref  mathscinet  zmath  isi
  6. R. G. Novikov, “Multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi=0$”, Funct. Anal. Appl., 22:4 (1988), 263–272  mathnet  crossref  mathscinet  zmath  isi
  7. R. G. Novikov, G. M. Henkin, “The $\bar\partial$-equation in the multidimensional inverse scattering problem”, Russian Math. Surveys, 42:3 (1987), 109–180  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  8. L. V. Bogdanov, “Veselov–Novikov equation as a natural two-dimensional generalization of the Korteweg–de Vries equation”, Theoret. and Math. Phys., 70:2 (1987), 219–223  mathnet  crossref  mathscinet  zmath  isi
  9. P. G. Grinevich, S. V. Manakov, “Inverse scattering problem for the two-dimensional Schrödinger operator, the $\bar\partial$-method and nonlinear equations”, Funct. Anal. Appl., 20:2 (1986), 94–103  mathnet  crossref  mathscinet  zmath
  10. P. G. Grinevich, R. G. Novikov, “Analogs of multisoliton potentials for the two-dimensional Schrödinger operator”, Funct. Anal. Appl., 19:4 (1985), 276–285  mathnet  crossref  mathscinet  zmath  isi
Previous
1
2
3
4
5