69 citations to https://www.mathnet.ru/eng/dan8652
  1. Nguyen Tien Zung, “On the general position property of simple Bott integrals”, Russian Math. Surveys, 45:4 (1990), 179–180  mathnet  crossref  mathscinet  zmath  isi
  2. Nguyen Tien Zung, A. T. Fomenko, “Topological classification of integrable non-degenerate Hamiltonians on a constant energy three-dimensional sphere”, Russian Math. Surveys, 45:6 (1990), 109–135  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  3. A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  4. S. V. Matveev, A. T. Fomenko, V. V. Sharko, “Round Morse functions and isoenergy surfaces of integrable Hamiltonian systems”, Math. USSR-Sb., 63:2 (1989), 319–336  mathnet  crossref  mathscinet  zmath
  5. A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412  mathnet  crossref  mathscinet  zmath
  6. A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296  mathnet  crossref  mathscinet  zmath  isi
  7. S. V. Matveev, A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  8. A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383  mathnet  crossref  mathscinet  zmath
  9. A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658  mathnet  crossref  mathscinet  zmath
Previous
1
2
3
4
5
6
7