69 citations to https://www.mathnet.ru/eng/dan8652
  1. A. Yu. Moskvin, “Topology of the Liouville foliation on a 2-sphere in the Dullin-Matveev integrable case”, Sb. Math., 199:3 (2008), 411–448  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  2. E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  3. A. A. Oshemkov, V. V. Sharko, “Classification of Morse–Smale flows on two-dimensional manifolds”, Sb. Math., 189:8 (1998), 1205–1250  mathnet  crossref  crossref  mathscinet  zmath  isi
  4. V. V. Kalashnikov, “Typical integrable Hamiltonian systems on a four-dimensional symplectic manifold”, Izv. Math., 62:2 (1998), 261–285  mathnet  crossref  crossref  mathscinet  zmath  isi
  5. A. V. Bolsinov, “Fomenko invariants in the theory of integrable Hamiltonian systems”, Russian Math. Surveys, 52:5 (1997), 997–1015  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  6. K. N. Mishachev, “Hamiltonian links in three-dimensional manifolds”, Izv. Math., 59:6 (1995), 1193–1205  mathnet  crossref  mathscinet  zmath  isi
  7. Nguyen Tien Zung, “The complexity of integrable Hamiltonian systems on a prescribed three-dimensional constant-energy submanifold”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 507–533  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  8. A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR-Izv., 38:1 (1992), 69–90  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  9. A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596  mathnet  crossref  mathscinet  zmath  adsnasa
  10. A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94  mathnet  crossref  mathscinet  zmath  adsnasa  isi
Previous
1
2
3
4
5
6
7
Next