18 citations to 10.1515/mcma-2015-0103 (Crossref Cited-By Service)
  1. V. T. Volkov, N. N. Nefedov, “Asymptotic Solution of Coefficient Inverse Problems for Burgers-Type Equations”, Comput. Math. and Math. Phys., 60, no. 6, 2020, 950  crossref
  2. S I Kabanikhin, D V Klyuchinskiy, N S Novikov, M A Shishlenin, “On the problem of modeling the acoustic radiation pattern of source for the 2D first-order system of hyperbolic equations”, J. Phys.: Conf. Ser., 1715, no. 1, 2021, 012038  crossref
  3. Nikita Novikov, Maxim Shishlenin, “Direct Method for Identification of Two Coefficients of Acoustic Equation”, Mathematics, 11, no. 13, 2023, 3029  crossref
  4. Sergey Kabanikhin, Maxim Shishlenin, Nikita Novikov, Nikita Prokhoshin, “Spectral, Scattering and Dynamics: Gelfand–Levitan–Marchenko–Krein Equations”, Mathematics, 11, no. 21, 2023, 4458  crossref
  5. Sergey I. Kabanikhin, Nikita S. Novikov, Maxim A. Shishlenin, “Gelfand-Levitan-Krein method in one-dimensional elasticity inverse problem”, J. Phys.: Conf. Ser., 2092, no. 1, 2021, 012022  crossref
  6. С.И. Кабанихин, “Inverse Problems and Artificial Intelligence”, Успехи кибернетики / Russian Journal of Cybernetics, no. 3, 2021, 33  crossref
  7. Nikolay Nikolaevich Nefedov, V. T. Volkov, “Asymptotic solution of the inverse problem for restoring the modular type source in Burgers’ equation with modular advection”, Journal of Inverse and Ill-posed Problems, 28, no. 5, 2020, 633  crossref
  8. Maxim A. Shishlenin, Mohammad Izzatulah, Nikita S. Novikov, “Comparative Study of Acoustic Parameter Reconstruction by using Optimal Control Method and Inverse Scattering Approach”, J. Phys.: Conf. Ser., 2092, no. 1, 2021, 012004  crossref
  9. Michael V. Klibanov, Jingzhi Li, Loc H. Nguyen, Zhipeng Yang, “Convexification Numerical Method for a Coefficient Inverse Problem for the Radiative Transport Equation”, SIAM J. Imaging Sci., 16, no. 1, 2023, 35  crossref
  10. Sergey I. Kabanikhin, Dmitriy V. Klyuchinskiy, Nikita S. Novikov, Maxim A. Shishlenin, “Numerics of acoustical 2D tomography based on the conservation laws”, Journal of Inverse and Ill-posed Problems, 28, no. 2, 2020, 287  crossref
1
2
Next