18 citations to 10.1515/mcma-2015-0103 (Crossref Cited-By Service)
  1. Michael V. Klibanov, Jingzhi Li, Loc H. Nguyen, Vladimir Romanov, Zhipeng Yang, “Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation”, SIAM J. Imaging Sci., 16, no. 3, 2023, 1762  crossref
  2. Dmitriy Klyuchinskiy, Nikita Novikov, Maxim Shishlenin, “A Modification of Gradient Descent Method for Solving Coefficient Inverse Problem for Acoustics Equations”, Computation, 8, no. 3, 2020, 73  crossref
  3. Dmitry V. Lukyanenko, Maxim A. Shishlenin, Vladimir T. Volkov, “Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation”, Journal of Inverse and Ill-posed Problems, 27, no. 5, 2019, 745  crossref
  4. S.I. Kabanikhin, M.A. Shishlenin, “Digital field”, Georesursy, 20, no. 3, 2018, 139  crossref
  5. Bektemessov Maktagali, Temirbekova Laura, “Discretization of equations Gelfand-Levitan-Krein and regularization algorithms”, J. Phys.: Conf. Ser., 2092, no. 1, 2021, 012015  crossref
  6. D.V. Lukyanenko, V.B. Grigorev, V.T. Volkov, M.A. Shishlenin, “Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction–diffusion equation with the location of moving front data”, Computers & Mathematics with Applications, 77, no. 5, 2019, 1245  crossref
  7. V. G. Romanov, “On Justification of the Gelfand–Levitan–Krein Method for a Two-Dimensional Inverse Problem”, Sib Math J, 62, no. 5, 2021, 908  crossref
  8. V. T. Volkov, N. N. Nefedov, “Asymptotic Solution of the Boundary Control Problem for a Burgers-Type Equation with Modular Advection and Linear Gain”, Comput. Math. and Math. Phys., 62, no. 11, 2022, 1849  crossref
Previous
1
2