Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Seminar on the History of Mathematics
September 7, 2017 18:00, St. Peterburg
 


Poincare’s last geometric theorem: history and drama of ideas

A. N. Kirillov
Video records:
MP4 410.1 Mb
MP4 850.4 Mb
MP4 1,651.0 Mb
Supplementary materials:
Adobe PDF 1.3 Mb

Number of views:
This page:1534
Video files:319
Materials:156

A. N. Kirillov



Abstract: H. Poincaré in 1912, the last year of his life, studying the three-body problem, published an unproved theorem (H.Poincaré. Sur un théorème de géométrie. Rend. Circ. Mat. Palermo, 33 (1912), 375–407), known as “Poincaré’s last geometric theorem.” Roughly speaking, it asserts that an area-preserving homeomorphism of the planar circular annulus onto itself admits at least two fixed points if the points of the boundary circles are advanced by this homeomorphism along these boundaries in opposite angular directions. Poincare proved the theorem in special cases. He expressed the hope that mathematicians would be interested in this result. The Poincaré’s hope was justified. Till now his theorem is the source of many interesting results in the theory of dynamical systems and topology. G. Birkhoff was the first who responded to the appeal of Poincaré. In 1913 he proved the theorem using his ingenious method, different from Poincaré’s reasoning, but the existence of the second fixed point was not correctly justified. The dramatic history of the proof and extensions of the Poincaré’s last geometric theorem is traced in the report.

Supplementary materials: kirillov_poincares_last_geom_th.pdf (1.3 Mb)
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024