Персоналии
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
 
Норин Николай Викторович

В базах данных Math-Net.Ru
Публикаций: 10
Научных статей: 10

Статистика просмотров:
Эта страница:299
Страницы публикаций:2600
Полные тексты:1286
Списки литературы:168
кандидат физико-математических наук (1983)
Специальность ВАК: 01.01.01 (вещественный, комплексный и функциональный анализ)

Научная биография:

Норин, Николай Викторович. Краевые задачи для бесконечномерного параболического уравнения : дис. ... канд. физ.-матем. наук : 01.01.01. - Москва, 1983. - 128 с.

   
Основные публикации:
  • Задачи по теории случайных процессов : учеб. пос. / А. А. Лобузов, С. Д. Гумляева, Н. В. Норин. - Москва : МИРЭА, 1993. - 68 с.; ISBN 5-230-12137-8

https://www.mathnet.ru/rus/person20088
Список публикаций на Google Scholar
Список публикаций на ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/204243

Публикации в базе данных Math-Net.Ru Цитирования
1997
1. Н. В. Норин, О. Г. Смолянов, “Логарифмические производные мер и гиббсовские распределения”, Докл. РАН, 354:4 (1997),  456–460  mathnet  mathscinet  zmath
1996
2. В. Н. Сорокин, А. С. Вшивцев, Н. В. Норин, “Решение спектральной задачи для уравнения Шредингера с вырожденным полиномиальным потенциалом четной степени”, ТМФ, 109:1 (1996),  107–123  mathnet  mathscinet  zmath; V. N. Sorokin, A. S. Vshivtsev, N. V. Norin, “Solution of spectral problem for Schrödinger equation with degenerate polinomial potential of even power”, Theoret. and Math. Phys., 109:1 (1996), 1329–1341  isi 13
1994
3. Н. В. Норин, “Формула Ито для расширенного стохастического интеграла с упреждающим ядром”, Теория вероятн. и ее примен., 39:4 (1994),  743–765  mathnet  mathscinet  zmath; N. V. Norin, “Itô formula for an extended stochastic integral with nonanticipating kernel”, Theory Probab. Appl., 39:4 (1994), 573–592  isi 1
1993
4. Н. В. Норин, О. Г. Смолянов, “Несколько результатов о логарифмических производных мер на локально выпуклом пространстве”, Матем. заметки, 54:6 (1993),  135–138  mathnet  mathscinet  zmath; N. V. Norin, O. G. Smolyanov, “Some results on logarithmic derivatives of measures on a locally convex space”, Math. Notes, 54:6 (1993), 1277–1279  isi 3
1991
5. Н. В. Норин, “Формула Ито для расширенного стохастического интеграла с рандомизированным временем”, Докл. АН СССР, 320:3 (1991),  545–550  mathnet  mathscinet  zmath; N. V. Norin, “Itô's formula for an extended stochastic integral with randomized time”, Dokl. Math., 44:2 (1992), 489–495
6. Н. В. Норин, “Абстрактное стохастическое интегральное уравнение, содержащее векторный расширенный стохастический интеграл”, Матем. заметки, 49:3 (1991),  153–155  mathnet  mathscinet  zmath; N. V. Norin, “Abstract stochastic integral equation involving a vector generalized stochastic integral”, Math. Notes, 49:3 (1991), 332–334  isi 1
1987
7. Н. В. Норин, “Стохастические интегралы и дифференцируемые меры”, Теория вероятн. и ее примен., 32:1 (1987),  114–124  mathnet  mathscinet  zmath; N. V. Norin, “Stochastic Integrals and Differentiable Measures”, Theory Probab. Appl., 32:1 (1987), 107–116  isi 11
1986
8. Н. В. Норин, “Расширенный стохастический интеграл для негауссовских мер в локально выпуклом пространстве”, УМН, 41:3(249) (1986),  199–200  mathnet  mathscinet  zmath; N. V. Norin, “An extended stochastic integral for non-Gaussian measures in locally convex spaces”, Russian Math. Surveys, 41:3 (1986), 229–230  isi 4
1985
9. Н. В. Норин, “Аналитичность бесконечномерных тепловых потенциалов”, Матем. заметки, 37:3 (1985),  365–374  mathnet  mathscinet  zmath; N. V. Norin, “Analyticity of infinite-dimensional heat potentials”, Math. Notes, 37:3 (1985), 205–210  isi 1
1984
10. Н. В. Норин, “Тепловые потенциалы на гильбертовом пространстве”, Матем. заметки, 35:4 (1984),  531–548  mathnet  mathscinet  zmath; N. V. Norin, “Thermal potentials on a Hilbert space”, Math. Notes, 35:4 (1984), 279–288  isi 3

Организации
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024