Ordinary differential equations Fractional calculus Generalized operators Integral inequalities.
Основные темы научной работы
Mathematics
Научная биография:
I born in Cuba, since 1998 I live in Argentina.
Основные публикации:
Paulo M. Guzman, Luciano M. Lugo, Juan E. Nápoles Valdés and Miguel Vivas-Cortez, “On a New Generalized Integral Operator and Certain
Operating Properties”, Axioms, 9:2 (2020), 69
JUAN E. NAPOLES VALDES and CEMIL TUNC, “ON THE BOUNDEDNESS AND OSCILLATION OF
NON-CONFORMABLE LIENARD EQUATION”, Journal of Fractional Calculus and Applications, 11:2 (2020), 92-101http://math-frac.oreg/Journals/JFCA/
Paulo M. Guzmán, Péter Kórus and Juan E. Nápoles Valdés, “Generalized Integral Inequalities of Chebyshev Type”, Fractal and fractional, 4:10 (2020)
S. BERMUDO, P. KORUS and J. E. NAPOLES VALDES, “ON q-HERMITE–HADAMARD INEQUALITIES
FOR GENERAL CONVEX FUNCTIONS”, Acta Mathematica Hungarica, 2020
Sergio Bermudo, JuanE. Nápoles and Juan Rada, “Extremal trees for the Randi ´c index with given domination number”, Applied Mathematics and Computation, 375 (2020), 125122
J. E. Nápoles, P. M. Guzmán, B. Bayraktar, “New integral inequalities in the class of functions $(h,m)$-convex”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 24:2 (2024), 173–183
2.
J. E. Nápoles, P. M. Guzmán, B. Bayraktar, “Milne-type integral inequalities for modified $(h,m)$-convex functions on fractal sets”, Пробл. анал. Issues Anal., 13(31):2 (2024), 106–127
2023
3.
J. E. Nápoles, M. N. Quevedo Cubillos, B. Bayraktar, “Integral inequalities of Simpson type via weighted integrals”, Пробл. анал. Issues Anal., 12(30):2 (2023), 68–86