Научная биография: |
Y.Q. Bai, M El. Ghami, C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM Journal on Optimization 15 (1) (2004) 101--128.
2 : D. Den Hertog, Interior point approach to linear, quadratic, and convex programming, in: Mathematics and its Applications, vol. 277, Kluwer Academic Publishers, Dordrecht, 1994.
3 : N.K. Karmarkar, A new polynomial-time algorithm for linear programming, in: Proceedings of the 16th Annual ACM Symposium on Theory of Computing, 1984, pp. 302 311
4 : A.Keraghel, Etude adaptative et comparative des principales variantes dans l'algorithme de karmarkar, Thèse de Doctorat, Université de Joseph Fourier -Grenoble I, France, (1989).
5 : J. Peng, C. Roos, T. Terlaky, Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms, Princeton University Press, 2002.
6 : Z.G.Qian& Y.Q. Bay, Primal-dual Interior-Point Algorithms with Dynamic Step SizeBased on kernel functions for linear Programming, Journal of Shanghai University,(2005), 9(5), 391-396.
7 : C. Roos, T. Terlaky, J.-Ph. Vial, Theory and Algorithms for Linear Optimization. An Interior-Point Approach, John Wiley & Sons, Chichester, UK, 1997.
8 : C. Roos, T. Terlaky, J. Ph. Vial, Theory and algorithms for linear optimization, in: An Interior-Point Approach, John Wiley & Sons, Chichester, UK, 1997.
9 : G. Sonnevend, An "analytic center" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming, in: A. Prekopa, J. Szelezsan, B. Strazicky (Eds.), System Modelling and Optimization: Proceedings of .
10 : R.J. Vanderbei, Linear Programming, Foundations and Extensions, 2nd ed., in: International Series in Operations Research and Management Science, vol. 37, 1997.
11 : Y. Ye, Interior Point Algorithms, Theory and Analysis, John Wiley and Sons, Chichester, UK, 1997. |