Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Sheinman, Oleg Karlovich

Total publications: 67 (57)
in MathSciNet: 55 (49)
in zbMATH: 48 (45)
in Web of Science: 38 (34)
in Scopus: 40 (40)
Cited articles: 35
Citations: 316
Presentations: 54

Number of views:
This page:6851
Abstract pages:20525
Full texts:5809
References:2159
Doctor of physico-mathematical sciences (2007)
Speciality: 01.01.04 (Geometry and topology)
Birth date: 9.06.1949
E-mail:
Website: https://www.mi.ras.ru/~sheinman
Keywords: Lie algebras, representations, Riemann surfaces, moduli spaces, conformal field theory, integrable systems.
   
Main publications:
  1. O. K. Sheinman, Current algebras on Riemann surfaces, De Gruyter Expositions in Mathematics, 58, Walter de Gruyter GmbH & Co, Berlin–Boston, 2012 , 150 pp.  crossref  mathscinet
  2. O. K. Sheinman, “Duality in some discrete minimization problems”, Russian Math. Surveys, 33:2 (1978), 251–252  mathnet  crossref  mathscinet  zmath  adsnasa  scopus

https://www.mathnet.ru/eng/person9016
List of publications on Google Scholar
https://zbmath.org/authors/ai:sheinman.oleg-k
https://mathscinet.ams.org/mathscinet/MRAuthorID/201393
https://elibrary.ru/author_items.asp?authorid=7841
https://www.webofscience.com/wos/author/record/Q-4145-2016
https://www.scopus.com/authid/detail.url?authorId=6603235446

Full list of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)
1. O. K. Sheinman, “Separation of Variables for Hitchin Systems with the Structure Group $\mathrm {SO}(4)$ on Genus $2$ Curves”, Proc. Steklov Inst. Math., 325 (2024), 292–303  mathnet  crossref  crossref
2. O. K. Sheinman, Bin Wang, “Hitchin systems: some recent advances”, UMN, 79:4(478) (2024), 131–168  mathnet  crossref 1
3. Oleg Sheinman, “Quantization of Lax integrable systems and conformal field theory”, Homotopy algebras, deformation theory and quantization, Banach Cent. Publ., 123, Banach Center Publications, Institute of Mathematics Polish Academy of Sciences, Warsaw, 2021, 111–122  mathnet  crossref;
4. P. I. Borisova, O. K. Sheinman, “Sistemy Khitchina na giperellipticheskikh krivykh”, Analiz i matematicheskaya fizika, Sbornik statei. K 70-letiyu so dnya rozhdeniya professora Armena Glebovicha Sergeeva, Tr. MIAN, 311, MIAN, M., 2020, 27–40  mathnet  crossref  mathscinet  isi 3
5. O. K. Sheinman, “Quantization of integrable systems with spectral parameter on a Riemann surface”, Dokl. Math., 102:3 (2020), 524–527  mathnet  crossref  crossref  zmath  isi  elib  scopus
6. Funct. Anal. Appl., 53:4 (2019), 291–303 https://rdcu.be/b0P45  mathnet  crossref  crossref  mathscinet  isi  elib  scopus
7. O. K. Sheinman, “Certain reductions of Hitchin systems of rank 2 and genera 2 and 3”, Dokl. Math., 97:2 (2018), 144–146  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
8. O. K. Sheinman, “Integrable Systems of Algebraic Origin and Separation of Variables”, Funct. Anal. Appl., 52:4 (2018), 316–320  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
9. O. K. Sheinman, “Matrix divisors on Riemann surfaces and Lax operator algebras”, Trans. Moscow Math. Soc., 78 (2017), 109–121  mathnet  crossref  mathscinet  zmath  elib  elib  scopus
10. O. K. Sheinman, “Almost graded current algebras on the symmetric square of a curve”, Russian Math. Surveys, 72:2 (2017), 384–386  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
11. O. K. Sheinman, “Lax operator algebras and gradings on semisimple Lie algebras”, Transform. Groups, 21:1 (2016), 181–196 , First online: September, 2015, arXiv: 1406.5017  mathnet  crossref  mathscinet  zmath  isi  elib  scopus  scopus 3
12. O. K. Sheinman, “Lax operator algebras and integrable systems”, Russian Math. Surveys, 71:1 (2016), 109–156  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
13. O. K. Sheinman, “Lax operator algebras and Lax equations”, after series of authors talks at Southeastern Lie Theory Workshop, College of Charleston, Charlestone, SC, USA, December 16–18, 2012, algebras, Lie superalgebras, vertex algebras and related topics, Proc. Sympos. Pure Math., 92, eds. K. C. Misra, D. K. Nakano, B. J. Parshall, Amer. Math. Soc., Providence, RI, 2016, 221–246 http://bookstore.ams.org/pspum-92/  mathscinet  zmath
14. O. K. Sheinman, “Lax operators algebras and gradings on semisimple Lie algebras”, Dokl. Math., 91:2 (2015), 160–162  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
15. O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras”, Theoret. and Math. Phys., 185:3 (2015), 1816–1831  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  scopus
16. O. K. Sheinman, “Semisimple Lie Algebras and Hamiltonian Theory of Finite-Dimensional Lax Equations with Spectral Parameter on a Riemann Surface”, Proc. Steklov Inst. Math., 290 (2015), 178–188  mathnet  crossref  crossref  isi  elib  elib  scopus
17. Oleg K. Sheinman, “Global current algebras and localization on Riemann surfaces”, Mosc. Math. J., 15:4 (2015), 833–846  mathnet  crossref  mathscinet  zmath  isi  elib  scopus 6
18. O. K. Sheinman, “Lax operator algebras of type $G_2$”, Dokl. Math., 89:2 (2014), 151–153  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
19. O. K. Sheinman, “Lax operator algebras of type $G_2$”, Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov's Seminar 2012–2014, Advances in the Mathematical Sciences, Amer. Math. Soc. Transl. Ser. 2, 234, eds. V. M. Buchstaber, B. A. Dubrovin, I. M. Krichever, Amer. Math. Soc., Providence, RI, 2014, 373–392 , arXiv: 1304.2510  crossref  mathscinet  zmath 1
20. O. K. Sheinman, “Lax equations and the Knizhnik–Zamolodchikov connection”, Geometric Methods in Physics, XXX Workshop, Białowieża, Poland, 2011, Trends in Mathematics, Springer, Basel, 2013, 405–413 , arXiv: 1009.4706  mathnet  crossref  mathscinet  zmath  adsnasa  scopus 1
21. O. K. Sheinman, Current algebras on Riemann surfaces, De Gruyter Expositions in Mathematics, 58, Walter de Gruyter GmbH & Co, Berlin–Boston, 2012 , 150 pp.  crossref  mathscinet 22
22. O. K. Sheinman, “Lax operator algebras and Hamiltonian integrable hierarchies”, Russian Math. Surveys, 66:1 (2011), 145–171  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
23. O. K. Sheinman, “On certain current algebras related to finite-zone integration”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 271–284  mathscinet  zmath
24. M. Schlichenmaier, O. K. Sheinman, “Central extensions of Lax operator algebras”, Russian Math. Surveys, 63:4 (2008), 727–766  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
25. O. K. Sheinman, “Lax Operator Algebras and Integrable Hierarchies”, Proc. Steklov Inst. Math., 263 (2008), 204–213  mathnet  crossref  mathscinet  zmath  zmath  isi  elib  elib  scopus
26. I. M. Krichever, O. K. Sheinman, “Lax Operator Algebras”, Funct. Anal. Appl., 41:4 (2007), 284–294  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
27. O. K. Sheinman, “Krichever–Novikov algebras, their representations and applications in geometry and mathematical physics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), 85–161  mathnet  mathnet  crossref  crossref  zmath  isi  elib  scopus
28. O. K. Sheinman, “Krichever–Novikov algebras and their representations”, Noncommutative geometry and representation theory in mathematical physics, Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 2005, 313–321  crossref  mathscinet  zmath
29. O. K. Sheinman, “Highest weight representations of Krichever–Novikov algebras and integrable systems”, Russian Math. Surveys, 60:2 (2005), 370–372  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
30. O. K. Sheinman, “Projective Flat Connections on Moduli Spaces of Riemann Surfaces and the Knizhnik–Zamolodchikov Equations”, Proc. Steklov Inst. Math., 251 (2005), 293–304  mathnet  mathscinet  zmath
31. O. K. Sheinman, “Affine Krichever-Novikov algebras, their representations and applications”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 297–316  mathscinet  zmath
32. M. Schlichenmaier, O. K. Sheinman, “Knizhnik–Zamolodchikov equations for positive genus and Krichever–Novikov algebras”, Russian Math. Surveys, 59:4 (2004), 737–770  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
33. O. K. Sheinman, Basic representation theory, MCCME, Moscow, 2005
34. I. M. Paramonova, O. K. Sheinman, Zadachi seminara “Algebry Li i ikh prilozheniya”, MTsNMO, M., 2004 , 48 pp.
35. O. K. Sheĭnman, “Second-orde Casimirs for the affine Krichever-Novikov algebras $\widehat{\mathfrak{gl}}\sb{g,2}$ and $\widehat{\mathfrak{sl}}\sb{g,2}$”, Fundamental mathematics today, MCCME, Moscow, 2003, 372–404  mathscinet
36. O. K. Sheinman, “The Fermion Model of Representations of Affine Krichever–Novikov Algebras”, Funct. Anal. Appl., 35:3 (2001), 209–219  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
37. O. K. Sheinman, “Second order Casimirs for the affine Krichever–Novikov algebras $\widehat{\mathfrak{gl}}_{g,2}$ and $\widehat{\mathfrak{sl}}_{g,2}$”, Mosc. Math. J., 1:4 (2001), 605–628  mathnet  crossref  mathscinet  zmath  isi 9
38. O. K. Sheinman, “Second-order Casimir operators for the affine Krichever–Novikov algebras $\widehat{\mathfrak{gl}}_{g,2}$ and $\widehat{\mathfrak{sl}}_{g,2}$”, Russian Math. Surveys, 56:5 (2001), 986–987  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  scopus
39. O. K. Sheinman, “Krichever–Novikov algebras and self-duality equations on Riemann surfaces”, Russian Math. Surveys, 56:1 (2001), 176–178  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  scopus
40. M. Schlichenmaier, O. K. Sheinman, “Wess–Zumino–Witten–Novikov theory, Knizhnik–Zamolodchikov equations, and Krichever–Novikov algebras”, Russian Math. Surveys, 54:1 (1999), 213–249  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  scopus
41. M. Schlichenmaier, O. K. Scheinman, “The Sugawara construction and Casimir operators for Krichever-Novikov algebras”, Complex analysis and representation theory, 1, J. Math. Sci. (New York), 92:2 (1998), 3807–3834 , arXiv: q-alg/9512016  crossref  mathscinet  zmath  scopus 23
42. O. K. Sheinman, “Orbits and representations of Krichever-Novikov affine-type algebras”, Algebra, 3, J. Math. Sci., 82:6 (1996), 3834–3843  crossref  mathscinet  zmath  scopus
43. O. K. Sheinman, “Integrable many-body systems of Calogero-Moser-Sutherland type in high dimension”, Internat. Math. Res. Notices, 1996, no. 1, 27–36  crossref  mathscinet  zmath  elib  scopus
44. O. K. Sheĭnman, “Representations of Krichever-Novikov algebras”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 185–197  mathscinet  zmath  isi
45. O. K. Sheinman, “Weil Modules with Highest Weight for Affine Lie Algebras on Riemann Surfaces”, Funct. Anal. Appl., 29:1 (1995), 44–55  mathnet  crossref  mathscinet  zmath  isi  scopus
46. O. K. Sheinman, “The Krichever–Novikov algebras and CCC-groups”, Russian Math. Surveys, 50:5 (1995), 1097–1099  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus
47. O. K. Sheinman, “Affine Lie Algebras on Riemann Surfaces”, Funct. Anal. Appl., 27:4 (1993), 266–272  mathnet  crossref  mathscinet  zmath  isi  scopus
48. O. K. Sheinman, “Highest weight modules over certain quasigraded Lie algebras on elliptic curves”, Funct. Anal. Appl., 26:3 (1992), 203–208  mathnet  crossref  mathscinet  zmath  isi  scopus
49. O. K. Sheinman, “Elliptic affine Lie algebras”, Funct. Anal. Appl., 24:3 (1990), 210–219  mathnet  crossref  mathscinet  zmath  isi  scopus
50. O. K. Sheinman, “Hamiltonian string formalism and discrete groups”, Funct. Anal. Appl., 23:2 (1989), 124–128  mathnet  crossref  mathscinet  zmath  isi  scopus
51. O. K. Sheinman, “Kernel of evolution operator in the space of sections of a vector bundle as integral over trajectories”, Funct. Anal. Appl., 22:3 (1988), 251–253  mathnet  crossref  mathscinet  zmath  isi  scopus
52. O. K. Sheinman, “Dedekind $\eta$-function and indefinite quadratic forms”, Funct. Anal. Appl., 19:3 (1985), 232–234  mathnet  crossref  mathscinet  zmath  isi  scopus
53. S. S. Lebedev, O. K. Sheĭnman, “Dual approach to integer programming”, Engrg. Cybernetics, 21:1 (1983), 140–147 (1984)  mathscinet  zmath  scopus
54. S. S. Lebedev, O. K. Sheĭnman, “Duality in integer programming”, Èkonom. i Mat. Metody, 17:3 (1981), 593–608  mathscinet  zmath
55. O. K. Šeĭnman, “Duality and subadditive functions in integer programming”, Èkonom. i Mat. Metody, 16:4 (1980), 808–810  mathscinet
56. O. K. Šeĭnman, “Group-theoretic methods of constructing cuts in integer programming”, Mathematical methods of solution of economic problems, v. 8, Optimal'noe Planirovanie i Upravlenie [Optimal Planning and Control Series], Nauka, Moscow, 1979, 44–49  mathscinet
57. O. K. Sheinman, “Duality in some discrete minimization problems”, Russian Math. Surveys, 33:2 (1978), 251–252  mathnet  crossref  mathscinet  zmath  adsnasa  scopus
58. Geometriya, topologiya, matematicheskaya fizika, Sbornik statei. K 85-letiyu akademika Sergeya Petrovicha Novikova, Trudy MIAN, 325, ed. V. M. Bukhshtaber, P. G. Grinevich, I. A. Dynnikov, O. K. Sheinman, MIAN, M., 2024 , 333 pp.  mathnet
59. V. M. Buchstaber, A. N. Varchenko, A. P. Veselov, P. G. Grinevich, S. Grushevsky, S. Yu. Dobrokhotov, A. V. Zabrodin, A. V. Marshakov, A. E. Mironov, N. A. Nekrasov, S. P. Novikov, A. Yu. Okounkov, M. A. Olshanetsky, A. K. Pogrebkov, I. A. Taimanov, M. A. Tsfasman, L. O. Chekhov, O. K. Sheinman, S. B. Shlosman, “Igor' Moiseevich Krichever (on his 70th birthday)”, Russian Math. Surveys, 76:4 (2021), 733–743  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
60. V. A. Alexandrov, L. D. Beklemishev, V. M. Buchstaber, A. Yu. Vesnin, A. A. Gaifullin, N. P. Dolbilin, N. Yu. Erokhovets, M. D. Kovalev, V. S. Makarov, S. P. Novikov, D. O. Orlov, A. N. Parshin, I. Kh. Sabitov, D. V. Treschev, O. K. Sheinman, E. V. Shchepin, “Mikhail Ivanovich Shtogrin (on his 80th birthday)”, Russian Math. Surveys, 74:6 (2019), 1159–1162  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
61. Topologiya i fizika, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Sergeya Petrovicha Novikova, Trudy MIAN, 302, ed. V. M. Bukhshtaber, I. A. Dynnikov, O. K. Sheinman, MAIK «Nauka/Interperiodika», M., 2018 , 399 pp.  mathnet
62. O. K. Sheinman, Modern problems of mathematics, mechanics, and mathematical physics. Part II, Collected papers, Tr. Mat. Inst. Steklova, 294, MAIK Nauka/Interperiodica, Moscow, 2016, 325–327  mathnet  crossref  mathscinet  elib
63. N. N. Andreev, V. M. Buchstaber, A. I. Garber, V. V. Kozlov, S. P. Konovalov, A. A. Mal'tsev, Yu. V. Nesterenko, S. P. Novikov, A. N. Parshin, I. Kh. Sabitov, A. L. Semenov, A. G. Sergeev, O. K. Sheinman, M. I. Shtogrin, E. V. Shchepin, “Nikolai Petrovich Dolbilin (on his 70th birthday)”, Russian Math. Surveys, 69:1 (2014), 181–182  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
64. V. M. Buchstaber, L. O. Chekhov, S. Yu. Dobrokhotov, S. M. Gusein-Zade, Yu. S. Ilyashenko, S. M. Natanzon, S. P. Novikov, G. I. Olshanski, A. K. Pogrebkov, O. K. Sheinman, S. B. Shlosman, M. A. Tsfasman, “Igor Krichever”, Mosc. Math. J., 10:4 (2010), 833–834  mathnet
65. V. Buchstaber, S. Gusein-Zade, Yu. Ilyashenko, V. Kozlov, S. Natanzon, O. Sheinman, A. Sossinsky, D. Treschev, M. Tsfasman, “Armen Sergeev”, Mosc. Math. J., 9:2 (2009), 439–440  mathnet  mathscinet
66. S. M. Gusein-Zade, Yu. S. Ilyashenko, G. A. Kabatiansky, S. K. Lando, A. G. Sergeev, O. K. Sheinman, O. V. Schwarzman, M. A. Tsfasman, È. B. Vinberg, “Sergey Natanzon”, Mosc. Math. J., 8:4 (2008), 843–844  mathnet  isi
67. V. M. Buchstaber, Yu. S. Ilyashenko, I. M. Krichever, O. K. Sheinman, A. B. Sossinski, M. A. Tsfasman, “Sergey Petrovich Novikov”, Mosc. Math. J., 3:4 (2003), 1206–1208  mathnet  mathscinet

Presentations in Math-Net.Ru
1. К конечнозонной теории систем Хитчина
O. K. Sheinman
Conference "50 years of finite-gap integration"
September 18, 2024 12:50   
2. Hitchin systems: how to solve them
O. K. Sheinman
Beijing–Moscow Mathematics Colloquium
April 12, 2024 12:00
3. Об обращении преобразования Абеля–Прима с помощью тэта функций
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
March 6, 2024 18:30   
4. On effective solution to the Hitchin systems
O. K. Sheinman
Constructive Methods of the Theory of Riemann Surfaces and Applications
November 14, 2023 15:45   
5. Проблема Римана-Шоттки и гипотеза Новикова в работах Кричевера, Арбарелло, Марини и Грушевского
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
February 1, 2023 14:00   
6. Обратная задача для систем Хитчина над $SL_2$
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
April 20, 2022 18:30   
7. Hitchin systems on hyperelliptic curves: separation of variables
O. K. Sheinman
Russian-Chinese Conference «Integrable Systems and Geometry»
December 22, 2021 10:00   
8. Lecture 13. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
December 1, 2020 18:00   
9. Lecture 12. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
November 24, 2020 18:00   
10. Lecture 11. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
November 17, 2020 18:00   
11. Lecture 10. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
November 10, 2020 18:00   
12. Lecture 9. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
November 3, 2020 18:00   
13. Lecture 8. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
October 27, 2020 18:00   
14. Lecture 7. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
October 20, 2020 18:00   
15. Lecture 6. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
October 13, 2020 18:00   
16. Lecture 5. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
October 6, 2020 18:00   
17. Lecture 4. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
September 29, 2020 18:00   
18. Lecture 3. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
September 22, 2020 18:00   
19. Lecture 2. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
September 15, 2020 18:00
20. Lecture 1. Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems
E. Yu. Bunkova, P. G. Grinevich, O. K. Sheinman
Course by E. Yu. Bunkova, P. G. Grinevich and O. K. Sheinman "Algebraic-geometric methods in the theory of integrable systems: classical intehrable systems and Hitchin systems"
September 8, 2020 18:00
21. Системы Хитчина с точки зрения метода разделения переменных
O. K. Sheinman
International conference "8th Russian-Armenian Workshop on Mathematical Physics, Complex Analysis and Related Topics"
September 20, 2019 14:45   
22. Продвижения в теории систем Хитчина
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
April 24, 2019 18:30
23. Spectral curves and separation of variables for hyperelliptic Hitchin systems of types $A_n$, $B_n$, $C_n$
O. K. Sheinman
Dynamics in Siberia - 2019
February 25, 2019 14:30
24. Спектральные кривые и координаты Дарбу для систем Хитчина
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
October 24, 2018 18:30
25. Спектральные кривые гиперэллиптических систем Хитчина (продолжение)
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
July 4, 2018 14:00
26. Спектральные кривые гиперэллиптических систем Хитчина
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
May 23, 2018 16:45
27. Спектральные кривые гиперэллиптических систем Хитчина
O. K. Sheinman
Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS
May 16, 2018 14:00
28. Некоторые интегрируемые системы алгебраического происхождения и редукция систем Хитчина
O. K. Sheinman
Differential geometry and applications
March 5, 2018 16:45
29. Certain integrable systems of algebraic origin. Reductions and degenerations of Hitchin systems
O. Sheinman
Dynamics in Siberia - 2018
February 27, 2018 14:30
30. Some integrable systems of algebraic origin and separation of variables
O. K. Sheinman
Lie groups and invariant theory
February 14, 2018 16:45
31. Lax operator algebras, integrable systems and matrix divisors
O. Sheinman
Transformation groups 2017. Conference dedicated to Prof. Ernest B. Vinberg on the occasion of his 80th birthday
December 16, 2017 17:50   
32. Некоторые редукции систем Хитчина ранга 2 родов 2 и 3
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
August 30, 2017 14:00
33. Матричные дивизоры на римановых поверхностях
O. K. Sheinman
VI Workshop and Conference on Lie Algebras, Algebraic Groups, and Invariant Theory
February 3, 2017 12:15   
34. Moduli of matrix divisors on Riemann surfaces
O. K. Sheinman
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
November 23, 2016 16:45
35. Moduli of matrix divisors on Riemann surfaces
O. K. Sheinman
Riemann surfaces, Lie algebras and mathematical physics
November 11, 2016 17:00
36. Алгебры операторов Лакса и конечномерные интегрируемые системы
O. K. Sheinman
Differential geometry and applications
September 26, 2016 16:45
37. Модули матричных дивизоров на римановых поверхностях (по следам работ А.Н.Тюрина)
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
August 24, 2016 14:00
38. Lax operator algebras and related structures
O. K. Sheinman
Riemann surfaces, Lie algebras and mathematical physics
March 11, 2016 17:00
39. Алгебры операторов Лакса, интегрируемые системы и голоморфные расслоения
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
December 9, 2015 18:30
40. О параметризации пространств голоморфных расслоений на римановых поверхностях
O. K. Sheinman
Complex analysis and mathematical physics
November 17, 2015 16:00
41. Lax operator algebras and integrable systems
O. K. Sheinman
Steklov Mathematical Institute Seminar
December 18, 2014 16:00   
42. Lax operator algebras and gradings on semi-simple Lie algebras
O. K. Sheinman
Scientific session of the Steklov Mathematical Institute dedicated to the results of 2014
November 12, 2014 14:00   
43. Lax operator algebras and gradings on semi-simple Lie algebras
O. K. Sheinman
Random geometry and physics
September 11, 2014 12:10   
44. Алгебры операторов Лакса, градуировки полупростых алгебр и интегрируемые системы
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
August 13, 2014 14:00
45. Lax integrable systems and conformal field theory
O. K. Sheinman
Complex analysis and mathematical physics
February 18, 2013 16:00
46. Конечномерные лаксовы интегрируемые системы и уравнения Книжника–Замолодчикова
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
December 1, 2010 18:30
47. Алгебры операторов Лакса и интегрируемые иерархии
O. K. Sheinman
Lie groups and invariant theory
November 19, 2008
48. Current algebras on Riemann surfaces
O. K. Sheinman
Steklov Mathematical Institute Seminar
January 17, 2008 16:00   
49. Алгебры операторов Лакса
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
March 21, 2007
50. Аффинные алгебры Ли и их представления
O. K. Sheinman
Seminar on Arithmetic Algebraic Geometry
November 28, 2006 11:30
51. Krichever–Novikov algebras, their representations and applications to geometry and mathematical physics
O. K. Sheinman
Meetings of the St. Petersburg Mathematical Society
May 16, 2006
52. Симплектическая геометрия представлений фундаментальных групп поверхностей
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
March 2, 2005
53. Представления старшего веса алгебр Кричевера–Новикова
O. K. Sheinman
Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS
February 2, 2005
54. Деформации функций и векторных полей Кричевера–Новикова и связность Книжника–Замолодчикова
O. K. Sheinman
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
October 6, 2004

Books in Math-Net.Ru
  1. Geometry, Topology, and Mathematical Physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 85th birthday, Trudy Mat. Inst. Steklova, 325, ed. V. M. Buchstaber, P. G. Grinevich, I. A. Dynnikov, O. K. Sheinman, 2024, 333 с.
    http://mi.mathnet.ru/book1987
  2. Topology and physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 302, ed. V. M. Buchstaber, I. A. Dynnikov, O. K. Sheinman, 2018, 399 с.
    http://mi.mathnet.ru/book1715
  3. O. K. Sheinman, Krichever–Novikov Algebras, their Representations and Applications in Geometry and Mathematical Physics, Sovrem. Probl. Mat., 10, 2007, 142 с.
    http://mi.mathnet.ru/book230

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024