M. A. Korolev, “On the period of the continued fraction expansion for $\sqrt{d}$”, Izv. RAN. Ser. Mat. (to appear)
2024
2.
M. A. Korolev, “The structures generated on the unit circle by residues to given modulus”, Mat. Zametki, 116:5 (2024), 766–791 (to appear)
3.
Maxim Korolev, Antanas Laurinčikas, “Joint functional independence of the Riemann zeta-function”, Indian J. Pure Appl. Math., 2024, 1–6 (Published online) ; (Published online)
4.
M. A. Korolev, Vvedenie v metod resheta, Letnyaya shkola “Sovremennaya matematika”, MTsNMO, Moskva, 2024 , 56 pp.
5.
N. N. Andreev, M. A. Vsemirnov, S. O. Gorchinskiy, D. N. Zaporozhets, S. V. Kislyakov, V. V. Kozlov, M. A. Korolev, D. O. Orlov, Yu. S. Osipov, D. V. Treschev, P. A. Yaskov, “Steklov Institute – 90!”, Russian Math. Surveys, 79:3 (2024), 557–562
2023
6.
Maxim Korolev, Antanas Laurinčikas, “Joint approximation of analytic functions by shifts of the Riemann zeta-function twisted by the Gram function”, Carpathian J. Math., 39:1 (2023), 175–187;
M. A. Korolev, “Arifmeticheskie svoistva “obobschennykh drobei Fareya””, Konferentsiya po kompleksnomu analizu i ego prilozheniyam (g. Krasnoyarsk, 11-15 sentyabrya 2023 g.), eds. K. V. Reznikova, Sibirskii federalnyi universitet, g. Krasnoyarsk, 2023, 34
8.
M. A. Korolev, “Ob odnom tozhdestve Ramanudzhana i ego obobscheniyakh”, Algebra, teoriya chisel, diskretnaya geometriya i mnogomasshtabnoe modelirovanie: sovremennye problemy, prilozheniya i problemy istorii Materialy XXII Mezhdunarodnoi konferentsii, posvyaschennoi 120-letiyu so dnya rozhdeniya akademika A. N. Kolmogorova i 60-letiyu so dnya otkrytiya shkoly-internata # 18 pri Moskovskom universitete., Biblioteka Chebyshevskogo sbornika (Tula, 26–29 sentyabrya 2023 goda), 350 s. ISBN 5–87954–388–9., Tula: Tul. gos. ped. un-t im. L. N. Tolstogo, 2023, 8–11http://poivs.tsput.ru/conf/international/XXII/files/Conference2023S.pdf?v=3
9.
Maxim Korolev, Antanas Laurinčikas, “On the approximation by Mellin transform of the Riemann zeta-function”, Axioms, 12:6 (2023), 520 , 19 pp. ;
M. A. Korolev, “A distribution related to Farey series”, Chebyshevskii Sb., 24:4 (2023), 137–190
11.
T.G.Bobkina, M. A. Korolev, “I. M. Vinogradov at Saint Petersburg Emperor University: to the problem stating”, Chebyshevskii Sb., 24:2 (2023), 284–293
2022
12.
M. A. Korolev, D. A. Popov, “On Jutila's integral in the circle problem”, Izv. Math., 86:3 (2022), 413–455
13.
M. A. Korolev, “Vinogradov's sieve and an estimate for an incomplete Kloosterman sum”, Sb. Math., 213:2 (2022), 216–234
14.
S. V. Konyagin, M. A. Korolev, “On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function”, Proc. Steklov Inst. Math., 319 (2022), 168–187 (to appear)
15.
M. A. Korolev, I. S. Rezvyakova, “O sovmestnykh priblizheniyakh logarifmov prostykh chisel”, Chebyshevskii sb., 23:5 (2022), 87–100
M. A. Korolev, “Udivlyayuschaya prostota. O dostizheniyakh Dzheimsa Meinarda”, Troitskii variant, 2022, no. 14 (358), 26 iyulya 2022 g., 7http://trv-science.ru/uploads/358N.pdf
2021
18.
M. A. Korolev, “Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues”, Proc. Steklov Inst. Math., 314 (2021), 96–126
19.
A. T. Daniyarkhodzhaev, M. A. Korolev, “On a Ramanujan Identity and Its Generalizations”, Math. Notes, 110:4 (2021), 511–521
20.
M. A. Korolev, I. S. Rezvyakova, “Incomplete Kloosterman sums to prime power modules”, Bull., Cl. Sci. Math. Nat., Sci. Math., 46 (2021), 73–92;
21.
Maxim Korolev, Antanas Laurinčikas, “Gram points in the theory of zeta-functions of certain cusp forms”, J. Math. Anal. Appl., 504:1 (2021), 125396 , 18 pp. ;
22.
Analiticheskaya i kombinatornaya teoriya chisel, Sbornik statei. K 130-letiyu so dnya rozhdeniya akademika Ivana Matveevicha Vinogradova, Trudy MIAN, 314, ed. D. V. Treschev, S. V. Konyagin, V. N. Chubarikov, M. A. Korolev, M. R. Gabdullin, MIAN, M., 2021 , 346 pp.
23.
M. Korolev, Kvant, 2021, no. 8, 2–9
24.
T. G. Bobkina, M. A. Korolev, “K 130-letiyu I.M. Vinogradova”, Kvant, 2021, no. 9, 13–15
2020
25.
M. A. Korolev, A. V. Shubin, “The second moment of the first derivative of Hardy’s $Z$-function”, Trigonometric Sums and Their Applications, eds. A. Raigorodskii, M. T. Rassias, Springer Nature Switzerland AG, 2020, 169–182
26.
M. A. Korolev, M. E. Changa, “New Estimate for Kloosterman Sums with Primes”, Math. Notes, 108:1 (2020), 87–93
27.
Maxim A. Korolev, “Kloosterman sums over primes of composite moduli”, Res. Number Theory, 6 (2020), 24 , 20 pp. ;
M. A. Korolev, “Kloosterman sums with primes and the solvability of one congruence with inverse residues — II”, Chebyshevskii sb., 21:1 (73) (2020), 200–211;
V. M. Buchstaber, M. A. Korolev, “On the scientific works of Dmitry Alexandrovich Popov”, Chebyshevskii Sb., 21:4 (2020), 396–421
32.
M. A. Korolev, “Obmanchivaya prostota prostykh chisel”, Kvant, 2020, no. 3, 10–17
2019
33.
M. A. Korolev, A. V. Ustinov, “Distribution of rational points on the circle of unit radius”, Izv. Math., 83:5 (2019), 1008–1049
34.
M. A. Korolev, “Short Kloosterman Sums with Primes”, Math. Notes, 106:1 (2019), 89–97
35.
M. A. Korolev, Kloosterman sums with primes to composite moduli, 2019 , 23 pp., arXiv: 1911.09981
36.
M. E. Changa, M. A. Korolev, Kloosterman sums with primes and the solvability of one congruence with inverse residues. I, 2019 , 38 pp., arXiv: 1911.12589
37.
M. A. Korolev, “O razreshimosti v prostykh chislakh nekotorykh sravnenii s obratnymi velichinami”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii: Materialy XVI Mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu so dnya rozhdeniya professora Mishelya Deza (Tula, 13-18 maya 2019 g.), Biblioteka Chebyshevskogo sbornika, eds. V. N. Chubarikov, N. M. Dobrovolskii, I. Yu. Rebrova,N. N. Dobrovolskii, Tul. gos. ped. un-t im. L.N. Tolstogo, 2019, 37–39
Alexandar P. Ivić, Maxim A. Korolev, “On the distribution of values of the argument of the Riemann zeta-function”, J. Number Theory, 200 (2019), 96–131 , arXiv: 1808.10768
40.
Maxim Korolev, Antanas Laurinčikas, “A new application of the Gram points”, Aequationes Math., 93:5 (2019), 859–873;
M. A. Korolev, “New estimate for a Kloosterman sum with primes for a composite modulus”, Sb. Math., 209:5 (2018), 652–659
42.
M. A. Korolev, “Kloosterman sums with multiplicative coefficients”, Izv. Math., 82:4 (2018), 647–661
43.
M. A. Korolev, “Elementary Proof of an Estimate for Kloosterman Sums with Primes”, Math. Notes, 103:5 (2018), 761–768
44.
M. A. Korolev, “Divisors of a quadratic form with primes”, Proc. Steklov Inst. Math., 303 (2018), 154–170
45.
M. A. Korolev, A. V. Ustinov, “The Distribution of the Rational Points on the Unit Circle”, Dokl. Math., 98:1 (2018), 321–324
46.
M. A. Korolev, I. E. Shparlinski, Sums of algebraic trace functions twisted by arithmetic functions, 2018 , 19 pp., arXiv: 1804.01337
47.
M. A. Korolev, “Raspredelenie ratsionalnykh tochek na edinichnoi okruzhnosti (po sovmestnoi rabote s A. V. Ustinovym)”, Materialy IV Mezhdunarodnoi nauchnoi konferentsii "Aktualnye problemy prikladnoi matematiki (Kabardino-Balkarskaya respublika, pos.Terskol, 22–26 maya 2018 g.), IPMA KBNTs RAN, Nalchik, 2018, 130
48.
M. A. Korolev, “Ob odnom raspredelenii, svyazannom s drobyami Fareya”, "Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya. Materialy XV Mezhdunarodnoi konferentsii, posvyaschennoi stoletiyu so dnya rozhdeniya professora Nikolaya Mikhailovicha Korobova (Tula, 28–31 maya 2018 g.), Seriya “Biblioteka Chebyshevskogo sbornika”, TPGU im. L.N. Tolstogo, Tula, 2018, 34-36
2022
49.
M. A. Korolev, “The estimate of weighted Kloosterman sums by additive shift”, Doklady Mathematics (Supplementary issues), 106:2 (2022), 221–229
2017
50.
S. V. Konyagin, M. A. Korolev, “Irreducible solutions of an equation involving reciprocals”, Sb. Math., 208:12 (2017), 1818–1834
51.
M. A. Korolev, “On Anatolii Alekseevich Karatsuba's works written in the 1990s and 2000s”, Proc. Steklov Inst. Math., 299 (2017), 1–43
52.
M. A. Korolev, “Generalized Kloosterman sum with primes”, Proc. Steklov Inst. Math., 296 (2017), 154–171
53.
K. Gong, C. Jia, M.A. Korolev, “Shifted character sums with multiplicative coefficients, II”, J. Number Theory, 178 (2017), 31–39 , arXiv: 1611.06577v1
M. A. Korolev, “On a Diophantine inequality with reciprocals”, Proc. Steklov Inst. Math., 299 (2017), 132–142
55.
M. A. Korolev, “On the estimates of Kloosterman sums”, Vilnius Conference in Combinatoris and Number Theory, Program and Abstract book (Vilnius, Lithuania, July 16 - July 22, 2017), Vilnius University, 2017, p. 14.http://mjcnt.phystech.edu/conference/vilnius/Vilnius2017.pdf
56.
M. A. Korolëv, “Obratnye vychety v posledovatelnosti Pyatetskogo-Shapiro”, Konferentsiya po teorii chisel i prilozheniyam v chest 80-letiya A.A.Karatsuby, Sbornik annotatsii (Moskva, 22 - 27 maya 2017 g.), eds. M. A. Korolëv, OOO “Poligraff”, 2017, s. 34.http://www.mathnet.ru/ConfLogos/936/abstracts.pdf
2018
57.
M. A. Korolev, “On Rieman–Siegel formula for the derivatives of Hardy's function”, St. Petersburg Math. J., 29:4 (2018), 581–601
2017
58.
Analiticheskaya teoriya chisel, Sbornik statei. K 80-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, Trudy MIAN, 299, ed. M. A. Korolev, A. G. Sergeev, MAIK «Nauka/Interperiodika», M., 2017 , 303 pp.
2022
59.
M. A. Korolev, “On non-linear Kloosterman sum”, Doklady Mathematics (Supplementary issues), 106:2 (2022), 246–249
2016
60.
S. V. Konyagin, M. A. Korolev, “On a symmetric diophantine equation with reciprocals”, Proc. Steklov Inst. Math., 294 (2016), 67–77
61.
M. A. Korolev, “Karatsuba's method for estimating Kloosterman sums”, Sb. Math., 207:8 (2016), 1142–1158
62.
M. A. Korolev, On Kloosterman sums with multiplicative coefficients, 2016 , 13 pp., arXiv: 1610.09171
63.
M. A. Korolev, “Short Kloosterman Sums to Powerful Modulus”, Doklady Mathematics, 94:2 (2016), 561–562
64.
M. A. Korolev, “Gram's Law in the Theory of Riemann Zeta-Function. Part 2”, Proc. Steklov Inst. Math., 294, suppl. 1 (2016), 1–78
65.
M. A. Korolev, “On Short Kloosterman Sums Modulo a Prime”, Math. Notes, 100:6 (2016), 820–827
2022
66.
M. A. Korolev, “Methods of estimating of incomplete Kloosterman sums”, Doklady Mathematics (Supplementary issues), 106:2 (2022), 230–245
2016
67.
Maxim Aleksandrovich Korolev, “An extreme values of the function S(T) in short intervals”, Indian J. Pure Appl. Math., 47:4 (2016), 603–615 , arXiv: 1302.0352
2015
68.
M. A. Korolev, “Large values of the Riemann zeta-function on short intervals of the critical line”, Dokl. Math., 91:1 (2015), 102–104
69.
M. A. Korolev, “On Incomplete Gaussian Sums”, Proc. Steklov Inst. Math., 290 (2015), 52–62
70.
M. A. Korolev, “On the Horizontal Distribution of Zeros of the Functions $\operatorname{Re} \zeta(s)$ and $\operatorname{Im}\zeta(s)$”, Math. Notes, 98:6 (2015), 986–989
2016
71.
M. A. Korolev, “Gram's Law in the Theory of Riemann Zeta-Function. Part 1”, Proc. Steklov Inst. Math., 292, suppl. 2 (2016), S1–S146
M. A. Korolev, “On the large values of the Riemann zeta-function on the critical line II”, Moscow J. Combin. Number Theory, 5:3 (2015), 60–86 , arXiv: 1412.6340
74.
E. A. Karatsuba, M. A. Korolev, I. S. Rezvyakova, V. N. Chubarikov, “On the conference to the memory of Anatoly Alexeevitch Karatsuba on number theory and applications”, Chebyshevskii Sb., 16:1 (2015), 89–152
2014
75.
M. A. Korolev, “On small values of the Riemann zeta-function at Gram points”, Sb. Math., 205:1 (2014), 63–82
76.
M. A. Korolev, “Moments of trigonometric polynomials and their applications in the theory of the Riemann zeta-function”, Dokl. Math., 89:3 (2014), 305–307
77.
M. A. Korolev, “On large values of the Riemann zeta-function on short segments of the critical line”, Acta Arith., 166:4 (2014), 349–390 , arXiv: 1404.6649
M. A. Korolev, “On new results related to Gram's law”, Izv. Math., 77:5 (2013), 917–940
79.
F. Götze, D. Kaliada, M. Korolev, On the number of integral quadratic polynomials with bounded heights and discriminants, 2013 , 14 pp., arXiv: 1308.2091 (in Russian)
80.
J. Kalpokas, M. A. Korolev, J. Steuding, “Negative values of the Riemann zeta function on the critical line”, Mathematika, 59:2 (2013), 443–462 , arXiv: 1109.2224v3
M. A. Korolev, “On the moments of some trigonometric sums”, 28th Journees Arithmetiques, Programme and Abstract book (Grenoble, France, July 1–5, 2013), Institut Fourier - University Joseph Fourier, 2013, 58–59
82.
M. A. Korolev, “On $L_p$-norms of certain trigonometric polynomials”, Palanga Conference in Combinatorics and Number Theory, Program and abstract book (Palanga, Lithuania, September 01–07, 2013), 2013, 24–26http://mjcnt.phystech.edu/conference/palanga/abstract_book.pdf (Supported by Yandex, Vilnius University and Moscow Journal of Combinatorics and Number Theory)
M. A. Korolev, “On Gram's law in the theory of the Riemann zeta function”, Izv. Math., 76:2 (2012), 275–309
85.
M. A. Korolev, “On Karatsuba's problem related to Gram's law”, Proc. Steklov Inst. Math., 276 (2012), 156–166
86.
M. A. Korolev, “On the small values of the Riemann zeta-function on the critical line”, Elementare und Analytische Zahlentheorie [Elementary and Analytic Number Theory] (Germany, Schloß Schney, August 13–18, 2012), eds. T. Christ, N. Oswald, R. Steuding, J. Steuding, Universität Würzburg, Würzburg, 2012, 21–22
87.
M. A. Korolev, “On Karatsuba’s problem concerning the divisor function”, Monatsh. Math., 168:3-4 (2012), 403–441 , arXiv: 1011.1391
M. A. Korolev, “Gram's law and the argument of the Riemann zeta function”, Publ. Inst. Math. (Beograd) (N.S.), 92(106) (2012), 53–78 , arXiv: 1106.0516v2
M. A. Korolev, “On some new results related to Gram's law”, Dokl. Math., 86:2 (2012), 661–662
90.
M. A. Korolev, “On Selberg formulae related to Gram's law”, Sb. Math., 203:12 (2012), 1808–1816
2013
91.
S. A. Gritsenko, E. A. Karatsuba, M. A. Korolev, I. S. Rezvyakova, D. I. Tolev, M. E. Changa, “Scientific Achievements of Anatolii Alekseevich Karatsuba”, Proc. Steklov Inst. Math., 280, suppl. 2 (2013), S1–S22
2011
92.
M. Korolev, “On Gram's law in the theory of Riemann zeta function”, Mezhdunarodnaya konferentsiya «Diofantovy priblizheniya. Sovremennoe sostoyanie i prilozheniya» (3–8 iyulya 2011 g., Minsk, Belarus), Tezisy dokladov, Institut matematiki NAN Belarusi, Minsk, 2011, 37–38
93.
M. A. Korolev, “Gram's law in the theory of Riemann's zeta function”, 27th Journees Arithmetiques (2011/06/27–07/01, Vilnius, Lithuania), Programme and Abstract book, Vilnius University, Vilnius, Lithuania, 2011, 34
94.
M. A. Korolev, “Letter to the editors”, Izv. Math., 75:4 (2011), 869
95.
M. A. Korolëv, “Sodokladchiki”, My – matematiki s Leninskikh gor, Vypusk № 5 «V. I. Arnold», Moskva, 2011, 312
2010
96.
M. A. Korolev, “Gram's law and Selberg's conjecture on the distribution of zeros of the Riemann zeta function”, Izv. Math., 74:4 (2010), 743–780
97.
M. A. Korolev, “On the average number of power residues modulo a composite number”, Izv. Math., 74:6 (2010), 1225–1254
98.
M. A. Korolev, “Short Kloosterman Sums with Weights”, Math. Notes, 88:3 (2010), 374–385
2008
99.
M. A. Korolev, “Selberg's conjecture concerning the distribution of imaginary parts of zeros of the Riemann zeta function”, Dokl. Math., 78:1 (2008), 531–534
100.
M. A. Korolev, “On the integral of Hardy's function $Z(t)$”, Izv. Math., 72:3 (2008), 429–478
101.
M. A. Korolev, “On large distances between consecutive zeros of the Riemann zeta-function”, Izv. Math., 72:2 (2008), 291–304
2007
102.
M. A. Korolev, “On large distances between neighboring zeros of the Riemann zeta function”, Dokl. Math., 76:3 (2007), 940–943
103.
M. A. Korolev, “On the primitive of the Hardy function $Z(t)$”, Dokl. Math., 75:2 (2007), 295–298
104.
A. A. Karatsuba, M. A. Korolëv, “Priblizhenie trigonometricheskoi summy bolee korotkoi”, Dokl. RAN, 412:2 (2007), 159–161
A. A. Karatsuba, M. A. Korolev, “A theorem on the approximation of a trigonometric sum by a shorter one”, Izv. Math., 71:2 (2007), 341–370
106.
M. A. Korolev, “Esche raz o posledovatelnostyakh Rachinskogo”, Nauka i zhizn, 2007, no. 10, 89–91 (http://www.nkj.ru/archive/articles/11844/)
2006
107.
M. A. Korolev, “On multiple zeros of the Riemann zeta function”, Izv. Math., 70:3 (2006), 427–446
108.
A. A. Karatsuba, M. A. Korolev, “Behaviour of the argument of the Riemann zeta function on the critical line”, Russian Math. Surveys, 61:3 (2006), 389–482
2005
109.
M. A. Korolev, “Sign changes of the function $S(t)$ on short intervals”, Izv. Math., 69:4 (2005), 719–731
110.
M. A. Korolev, “On large values of the function $S(t)$ on short intervals”, Izv. Math., 69:1 (2005), 113–122
111.
A. A. Karatsuba, M. A. Korolev, “The argument of the Riemann zeta function”, Russian Math. Surveys, 60:3 (2005), 433–488
2003
112.
M. A. Korolev, “On the behavior of the function $S(t)$ at short intervals”, Dokl. Math., 67:3 (2003), 396–397
113.
M. A. Korolev, “The argument of the Riemann zeta-function on the critical line”, Izv. Math., 67:2 (2003), 225–264
2002
114.
M. A. Korolev, “On the number of sign changes of the function $S(t)$ on a short interval”, Dokl. Math., 65:1 (2002), 58–59
115.
M. A. Korolev, “The Argument of the Riemann Zeta Function on the Critical Line”, Proc. Steklov Inst. Math., 239 (2002), 202–224
2001
116.
M. A. Korolëv, “O raspredelenii obratnykh velichin po zadannomu modulyu”, Sovremennye issledovaniya v matematike i mekhanike, Trudy XXIII Konferentsii molodykh uchenykh mekhaniko-matematicheskogo fakulteta MGU (Moskva, MGU, 9–14 aprelya 2001 g.), v. II, Izd-vo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, Moskva, 2001, 184–186
2000
117.
M. A. Korolev, “Incomplete Kloosterman sums and their applications”, Izv. Math., 64:6 (2000), 1129–1152
1998
118.
M. A. Korolev, “On a new multiplicative function”, Russian Math. Surveys, 53:4 (1998), 868–869
Отдел теории чисел S. V. Konyagin, M. A. Korolev Conference MIAN-90, dedicated to the 90th anniversary of Steklov Mathematical Institute May 13, 2024 10:00
6.
Дизайны на окружности Максим Королёв Mathematical seminar Faculty of Computer Science HSE March 1, 2024 18:10
7.
Дизайны на окружности M. A. Korolev Contemporary Problems in Number Theory February 29, 2024 12:45
Воспоминания об Алексее Николаевиче Паршине V. L. Popov, F. A. Bogomolov, B. S. Kashin, A. G. Sergeev, M. A. Korolev, S. O. Gorchinskiy, I. A. Panin “Numbers and functions” – Memorial conference for 80th birthday of Alexey Nikolaevich Parshin December 1, 2022 16:30
Метод А. А. Карацубы оценок сумм Клоостермана и его развитие M. A. Korolev XXI International Conference «Algebra, Number Theory, Discrete Geometry and Multiscale Modeling: Modern Problems, Applications and Problems of History», Dedicated to the 85th Anniversaryof the Birth of A. A. Karatsuba May 17, 2022 15:55
On a solvability of some congruences with reciprocals in prime numbers M. A. Korolev XVI International Conference «Algebra, Number Theory and Discrete Geometry: modern problems, applications and problems of history» dedicated to the 80th anniversary of the birth of Professor Michel Desa May 14, 2019 10:40
A distribution connected with Farey fractions M. A. Korolev XV International Conference «Algebra, Number Theory and Discrete Geometry: modern problems and applications», dedicated to the centenary of the birth of the Doctor of Physical and Mathematical Sciences, Professor of the Moscow State University Korobov Nikolai Mikhailovich May 30, 2018 09:00
Об оценках обобщенных сумм Клоостермана M. A. Korolev International conference on number theory and analysis, dedicated to the 125th anniversary of I. M. Vinogradov September 28, 2016 14:00
Analytic and Combinatorial Number Theory, Collected papers. In commemoration of the 130th birth anniversary of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 314, ed. D. V. Treschev, S. V. Konyagin, V. N. Chubarikov, M. A. Korolev, M. R. Gabdullin, 2021, 346 с. http://mi.mathnet.ru/book1847
Analytic number theory, On the occasion of the 80th anniversary of the birth of Anatolii Alekseevich Karatsuba, Trudy Mat. Inst. Steklova, 299, ed. M. A. Korolev, A. G. Sergeev, 2017, 303 с. http://mi.mathnet.ru/book1664
M. A. Korolev, Gram's Law in the Theory of Riemann Zeta-Function. Part 2, Sovrem. Probl. Mat., 21, 2016, 94 с. http://mi.mathnet.ru/book1616
M. A. Korolev, Gram's Law in the Theory of Riemann Zeta-Function. Part 1, Sovrem. Probl. Mat., 20, 2015, 162 с. http://mi.mathnet.ru/book1602