Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Mirzoyan, Vanya Alexandrovich

Statistics Math-Net.Ru
Total publications: 17
Scientific articles: 17

Number of views:
This page:1739
Abstract pages:5827
Full texts:2060
References:658
Mirzoyan, Vanya Alexandrovich
Professor
Doctor of physico-mathematical sciences (1999)
Speciality: 01.01.04 (Geometry and topology)
Birth date: 5.07.1948
E-mail:
Keywords: symmetric and semi-symmetric spaces, Einstein and semi-Einstein spaces, Ricci-semi-symmetric spaces and submanifolds, submanifolds with parallel and semi-parallel tensor fields, Einstein submanifolds, semi-Einstein submanifolds.
UDC: 511.752, 514.75, 514.752, 514.752.44, 514.76, 514.772, 513, 514.763
MSC: 53A05, 53A07, 53B20, 53B25, 53C21, 53C25, 53C35, 53C42

Subject:

The general classification theorem for Riemannian Ricci-semi-symetric (Ricci-semi-parallel) spaces was proved; were introduced semi-Einsteinian spaces and was showed that an arbitrary cone over Einsteinian space is a semi-Einsteinian space; the local classification and geometric description of some classes of the Ricci-semi-parallel submanifolds (in particular the hypersurfaces) in Euclidean spaces was given. The fundamental problem on a connection between the submanifolds with the parallel tensor fields and the submanifolds with semiparallel tensor fields was solved in the spaces of constant curvature. The number of papers was devoted to the submanifolds with parallel higher order fundamental forms, semiparallel submanifolds and submanifolds with the parallel Ricci tensor.

Biography

Graduated from Faculty of Mathematics and Mechanics of Yerevan State University in 1972 (department of algebra and geometry). Ph.D. thesis was defended in 1980. D.Sci. thesis was defended in 1999. A list of my works contains 70 titles.

   
Main publications:
  • Mirzoyan V. A. Ric-poluparallelnye podmnogoobraziya // Itogi nauki i tekhn. Problemy geometrii, 1991, 23, 29–66.
  • Mirzoyan V. A. Strukturnye teoremy dlya rimanovykh Ric-polusimmetricheskikh prostranstv // Izv. Vuzov. Matematika, 1992, 6, 80–89.
  • Mirzoyan V. A. Obobscheniya teoremy Yu. Lumiste o poluparallelnykh podmnogoobraziyakh // Izv. NAN Armenii. Matematika, 1998, 33(1), 53–64.
  • Mirzoyan V. A. Klassifikatsiya Ric-poluparallelnykh giperpoverkhnostei v evklidovykh prostranstvakh // Matem. sbornik, 2000, 191(9), 65–80.

https://www.mathnet.ru/eng/person8723
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2012
1. V. A. Mirzoyan, G. S. Machkalyan, “Normally flat $\mathrm{Ric}$-semisymmetric submanifolds in Euclidean spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 9,  19–31  mathnet  mathscinet; Russian Math. (Iz. VUZ), 56:9 (2012), 14–24  scopus 3
2011
2. V. A. Mirzoyan, “Normally flat semi-Einstein submanifolds of Euclidean spaces”, Izv. RAN. Ser. Mat., 75:6 (2011),  47–78  mathnet  mathscinet  zmath  elib; Izv. Math., 75:6 (2011), 1135–1164  isi  elib  scopus
2008
3. V. A. Mirzoyan, “Classification of a class of minimal semi-Einstein submanifolds with an integrable conullity distribution”, Mat. Sb., 199:3 (2008),  69–94  mathnet  mathscinet  zmath  elib; Sb. Math., 199:3 (2008), 385–409  isi  elib  scopus 2
2006
4. V. A. Mirzoyan, “Structure theorems for Ricci-semisymmetric submanifolds and geometric description of a class of minimal semi-Einstein submanifolds”, Mat. Sb., 197:7 (2006),  47–76  mathnet  mathscinet  zmath  elib; Sb. Math., 197:7 (2006), 997–1024  isi  scopus 4
2003
5. V. A. Mirzoyan, “Warped products, cones over Einstein spaces, and classification of Ric-semiparallel submanifolds of a certain class”, Izv. RAN. Ser. Mat., 67:5 (2003),  107–124  mathnet  mathscinet  zmath; Izv. Math., 67:5 (2003), 955–973  isi  scopus 4
2002
6. V. A. Mirzoyan, “Submanifolds with semiparallel tensor fields as envelopes”, Mat. Sb., 193:10 (2002),  99–112  mathnet  mathscinet  zmath; Sb. Math., 193:10 (2002), 1493–1505  isi  scopus 1
2000
7. V. A. Mirzoyan, “Classification of Ric-semiparallel hypersurfaces in Euclidean spaces”, Mat. Sb., 191:9 (2000),  65–80  mathnet  mathscinet  zmath; Sb. Math., 191:9 (2000), 1323–1338  isi  scopus 12
1998
8. V. A. Mirzoyan, “Submanifolds with higher-order semiparallel fundamental forms as envelopes”, Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 8,  79–80  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 42:8 (1998), 75–76 1
9. V. A. Mirzoyan, “On a class of submanifolds with a parallel fundamental form of higher order”, Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 6,  46–53  mathnet  mathscinet; Russian Math. (Iz. VUZ), 42:6 (1998), 42–48 1
1997
10. V. A. Mirzoyan, “Submanifolds with symmetric fundamental forms of higher orders as envelopes”, Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 9,  35–40  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 41:9 (1997), 33–37 2
1993
11. V. A. Mirzoyan, “Submanifolds with parallel Ricci tensor in Euclidean spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 9,  22–27  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 37:9 (1993), 20–25 3
1992
12. V. A. Mirzoyan, “Structure theorems for Riemannian Ric-semisymmetric spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 6,  80–89  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 36:6 (1992), 75–83 9
1991
13. V. A. Mirzoyan, “Ric-semisymmetric submanifolds”, Itogi Nauki i Tekhniki. Ser. Probl. Geom., 23 (1991),  29–66  mathnet  mathscinet  zmath; J. Math. Sci., 70:2 (1994), 1624–1646 13
14. V. A. Mirzoyan, “Semisymmetric submanifolds and their decompositions into a product”, Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 9,  29–38  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 35:9 (1991), 28–36 1
15. V. A. Mirzoyan, “Decomposition into a product of submanifolds with the parallel fundamental form $\alpha_s$ ($s\ge3$)”, Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 8,  44–54  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 35:8 (1991), 42–51 1
1983
16. V. A. Mirzoyan, “Submanifolds with a commuting normal vector field”, Itogi Nauki i Tekhniki. Ser. Probl. Geom., 14 (1983),  73–100  mathnet  mathscinet  zmath; J. Soviet Math., 28:2 (1985), 192–207 5
17. V. A. Mirzoyan, “Canonical immersions of $R$-spaces”, Mat. Zametki, 33:2 (1983),  255–260  mathnet  mathscinet  zmath; Math. Notes, 33:2 (1983), 128–131  isi

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024