Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 7, Pages 997–1024
DOI: https://doi.org/10.1070/SM2006v197n07ABEH003786
(Mi sm1592)
 

This article is cited in 3 scientific papers (total in 4 papers)

Structure theorems for Ricci-semisymmetric submanifolds and geometric description of a class of minimal semi-Einstein submanifolds

V. A. Mirzoyanab

a State Engineering University of Armenia
b European Regional Academy of the Caucasus
References:
Abstract: Structure results are proved for submanifolds of Euclidean spaces with semiparallel Ricci tensor under certain additional conditions. Minimal submanifolds are studied in greater detail. A geometric description of a class of normally flat semi-Einstein submanifolds with multiple principal curvature vectors is presented.
Bibliography: 36 titles.
Received: 23.05.2005
Russian version:
Matematicheskii Sbornik, 2006, Volume 197, Number 7, Pages 47–76
DOI: https://doi.org/10.4213/sm1592
Bibliographic databases:
UDC: 514.752
MSC: 53B20, 53B25
Language: English
Original paper language: Russian
Citation: V. A. Mirzoyan, “Structure theorems for Ricci-semisymmetric submanifolds and geometric description of a class of minimal semi-Einstein submanifolds”, Mat. Sb., 197:7 (2006), 47–76; Sb. Math., 197:7 (2006), 997–1024
Citation in format AMSBIB
\Bibitem{Mir06}
\by V.~A.~Mirzoyan
\paper Structure theorems for Ricci-semisymmetric submanifolds
and geometric description of a class of minimal semi-Einstein
submanifolds
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 7
\pages 47--76
\mathnet{http://mi.mathnet.ru/sm1592}
\crossref{https://doi.org/10.4213/sm1592}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2277331}
\zmath{https://zbmath.org/?q=an:1143.53021}
\elib{https://elibrary.ru/item.asp?id=9296523}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 7
\pages 997--1024
\crossref{https://doi.org/10.1070/SM2006v197n07ABEH003786}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241860100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751029768}
Linking options:
  • https://www.mathnet.ru/eng/sm1592
  • https://doi.org/10.1070/SM2006v197n07ABEH003786
  • https://www.mathnet.ru/eng/sm/v197/i7/p47
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:570
    Russian version PDF:245
    English version PDF:31
    References:71
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024