Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Smagin, Victor Vasil'evich

Statistics Math-Net.Ru
Total publications: 16
Scientific articles: 16

Number of views:
This page:3301
Abstract pages:4756
Full texts:1861
References:487
Professor
Doctor of physico-mathematical sciences (2002)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 2.01.1946
E-mail:
Keywords: parabolic equations; projective method; projective-difference method.

Subject:

My research interests include theoretical proof of applying the projective-difference methods to finding an approximate solution of evolutional, to be more exact, parabolic problems. I have received accuracy estimations (in adequate norms) of the approximate solutions of parabolic problems obtained using semi-discrete Galerkin's method and projective-difference methods which include the implicit Euler's scheme, Krank–Nikolson's scheme and some of its modifications. The convergence have been established and here have been also investigated the relation between the order of the speed of error convergence to 0 and various smoothness conditions of the parabolic problem initial data and its solution.

Biography

Graduated from Faculty of Mathematics and Mechanics of Voronezh State University (VSU) in 1969 (department of functional analysis and operator equations). Ph.D. thesis was defended in 1981. D. thesis was defended in 2002. A list of my works contains more than 100 titles.

   
Main publications:
  • Smagin V. V. Otsenki pogreshnosti poludiskretnykh priblizhenii po Galerkinu dlya parabolicheskikh uravnenii s kraevym usloviem tipa Neimana // Izv. vuzov. Matematika, 1996, 3(406), 50-57.
  • Smagin V. V. Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii // Matemat. sbornik, 1997, 188(3), 143-160.
  • Smagin V.V. Srednekvadratichnye otsenki pogreshnosti proektsionno-raznostnogo metoda dlya parabolicheskikh uravnenii // Zhurn. vychislit. matem. i matem. fizika, 2000, 40(6), 908-919.
  • Smagin V. V. Proektsionno-raznostnye metody priblizhennogo resheniya parabolicheskikh uravnenii s nesimmetrichnymi operatorami // Differents. ur-niya, 2001, 37(1), 115-123.
  • Smagin V. V. Energeticheskie otsenki pogreshnosti proektsionno-raznostnogo metoda so skhemoi Kranka-Nikolson dlya parabolicheskikh uravnenii // Sibirskii matem. zh., 2001, 42(3), 670-682.

https://www.mathnet.ru/eng/person8508
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/211260

Publications in Math-Net.Ru Citations
2017
1. A. S. Bondarev, V. V. Smagin, “Solving a variational parabolic equation with the periodic condition by a projection-difference method with the Crank–Nicolson scheme in time”, Sibirsk. Mat. Zh., 58:4 (2017),  761–770  mathnet  elib; Siberian Math. J., 58:4 (2017), 591–599  isi  elib  scopus 1
2016
2. A. A. Petrova, V. V. Smagin, “Convergence of the Galyorkin method of approximate solving of parabolic equation with weight integral condition on a solution”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 8,  49–59  mathnet; Russian Math. (Iz. VUZ), 60:8 (2016), 42–51  isi  scopus 3
2005
3. V. V. Smagin, “On the Rate of Convergence of Projection-Difference Methods for Smoothly Solvable Parabolic Equations”, Mat. Zametki, 78:6 (2005),  907–918  mathnet  mathscinet  zmath  elib; Math. Notes, 78:6 (2005), 841–852  isi  scopus 1
2003
4. V. V. Smagin, “Strong-Norm Error Estimates for the Projective-Difference Method for Parabolic Equations with Modified Crank–Nicolson Scheme”, Mat. Zametki, 74:6 (2003),  913–923  mathnet  mathscinet  zmath; Math. Notes, 74:6 (2003), 864–873  isi 2
2001
5. V. V. Smagin, “Projection-Difference Methods for the Approximate Solution of Parabolic Equations with Nonsymmetric Operators”, Differ. Uravn., 37:1 (2001),  115–123  mathnet  mathscinet; Differ. Equ., 37:1 (2001), 128–137 7
6. V. V. Smagin, “Energy error estimates for the projection-difference method with the Crank–Nicolson scheme for parabolic equations”, Sibirsk. Mat. Zh., 42:3 (2001),  670–682  mathnet  mathscinet  zmath  elib; Siberian Math. J., 42:3 (2001), 568–578  isi 14
2000
7. V. V. Smagin, “Mean-square estimates for the error of a projection-difference method for parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 40:6 (2000),  908–919  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 40:6 (2000), 868–879 10
1997
8. V. V. Smagin, “Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations”, Mat. Zametki, 62:6 (1997),  898–909  mathnet  mathscinet  zmath; Math. Notes, 62:6 (1997), 752–761  isi 7
9. V. V. Smagin, “Estimates of the rate of convergence of projective and projective-difference methods for weakly solvable parabolic equations”, Mat. Sb., 188:3 (1997),  143–160  mathnet  mathscinet  zmath; Sb. Math., 188:3 (1997), 465–481  isi  scopus 35
1996
10. V. V. Smagin, “On the solvability of an abstract parabolic equation with an operator whose domain depends on time”, Differ. Uravn., 32:5 (1996),  711–712  mathnet  mathscinet; Differ. Equ., 32:5 (1996), 723–725 4
11. V. V. Smagin, “Error estimates for semidiscrete approximations in the sense of Galerkin for parabolic equations with a Neumann-type boundary condition”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 3,  50–57  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 40:3 (1996), 48–55 18
12. V. V. Smagin, “Coercive error estimates for the projection-difference method for an abstract parabolic equation with an operator having time dependent domain”, Sibirsk. Mat. Zh., 37:2 (1996),  406–418  mathnet  mathscinet  zmath; Siberian Math. J., 37:2 (1996), 350–362  isi 6
1994
13. V. V. Smagin, “Coercive error estimates in the projection and projection-difference methods for parabolic equations”, Mat. Sb., 185:11 (1994),  79–94  mathnet  mathscinet  zmath; Russian Acad. Sci. Sb. Math., 83:2 (1995), 369–382  isi 19
1989
14. V. V. Smagin, “Convergence of semidiscrete approximations in the sense of Galerkin for quasilinear parabolic equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 2,  62–67  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 33:2 (1989), 74–82
1979
15. V. V. Smagin, “The rate of convergence of the Galerkin method of solution of an abstract quasilinear parabolic equation”, Differ. Uravn., 15:9 (1979),  1720–1721  mathnet  mathscinet
1970
16. V. V. Smagin, P. E. Sobolevskii, “Comparison theorems for the norms of the solutions of linear homogeneous differential equations in Hilbert spaces”, Differ. Uravn., 6:11 (1970),  2005–2010  mathnet  mathscinet  zmath

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024