|
|
Publications in Math-Net.Ru |
Citations |
|
2022 |
1. |
R. Gratwick, M. A. Sychev, “Direct methods in variational field theory”, Sibirsk. Mat. Zh., 63:5 (2022), 1027–1034 ; Siberian Math. J., 63:5 (2022), 862–867 |
|
2017 |
2. |
M. A. Sychev, “Variational field theory from the point of view of direct methods”, Sibirsk. Mat. Zh., 58:5 (2017), 1150–1158 ; Siberian Math. J., 58:5 (2017), 891–898 |
2
|
|
2012 |
3. |
M. A. Sychev, “The theorem on convergence with a functional for integral functionals with $p(x)$- and $p(x,u)$-growth”, Sibirsk. Mat. Zh., 53:4 (2012), 931–942 ; Siberian Math. J., 53:4 (2012), 748–756 |
2
|
|
2011 |
4. |
M. A. Sychev, “Lower semicontinuity and relaxation for integral functionals with $p(x)$- and $p(x,u)$-growth”, Sibirsk. Mat. Zh., 52:6 (2011), 1394–1413 ; Siberian Math. J., 52:6 (2011), 1108–1123 |
4
|
|
2005 |
5. |
M. A. Sychev, “Theorems on lower semicontinuity and relaxation for integrands with fast growth”, Sibirsk. Mat. Zh., 46:3 (2005), 679–697 ; Siberian Math. J., 46:3 (2005), 540–554 |
10
|
|
2004 |
6. |
M. A. Sychev, “Young measures as measurable functions and applications to variational problems”, Zap. Nauchn. Sem. POMI, 310 (2004), 191–212 ; J. Math. Sci. (N. Y.), 132:3 (2006), 359–370 |
6
|
|
1996 |
7. |
M. A. Sychev, “Examples of scalar regular variational problems that are unsolvable in the classical sense and satisfy standard growth conditions”, Sibirsk. Mat. Zh., 37:6 (1996), 1380–1396 ; Siberian Math. J., 37:6 (1996), 1212–1277 |
5
|
|
1995 |
8. |
M. A. Sychev, “Conditions on the integrand that are necessary and sufficient for
the validity of a theorem on convergence with a functional”, Dokl. Akad. Nauk, 344:6 (1995), 749–752 |
9. |
M. A. Sychev, “Necessary and sufficient conditions in semicontinuity and convergence theorems with a functional”, Mat. Sb., 186:6 (1995), 77–108 ; Sb. Math., 186:6 (1995), 847–878 |
13
|
10. |
M. A. Sychev, “Qualitative properties of solutions to the Euler equation and solvability of one-dimensional regular variational problems in the classical sense”, Sibirsk. Mat. Zh., 36:4 (1995), 873–892 ; Siberian Math. J., 36:4 (1995), 753–769 |
2
|
11. |
M. A. Sychev, “About continuous dependence on the integrand of solutions to simplest variational problems”, Sibirsk. Mat. Zh., 36:2 (1995), 432–443 ; Siberian Math. J., 36:2 (1995), 379–388 |
3
|
12. |
M. A. Sychev, “A criterion for continuity of an integral functional on a sequence of functions”, Sibirsk. Mat. Zh., 36:1 (1995), 203–214 ; Siberian Math. J., 36:1 (1995), 185–195 |
9
|
|
1994 |
13. |
M. A. Sychev, “Solvability of classical regular one-dimensional variational
problems as a corollary of the solvability of the Euler equation”, Dokl. Akad. Nauk, 337:5 (1994), 585–588 ; Dokl. Math., 50:1 (1995), 143–147 |
14. |
M. A. Sychev, “Lebesgue measure of the universal singular set for the simplest problems in the calculus of variations”, Sibirsk. Mat. Zh., 35:6 (1994), 1373–1389 ; Siberian Math. J., 35:6 (1994), 1220–1233 |
5
|
|
1992 |
15. |
M. A. Sychev, “On the question of regularity of the solutions of variational problems”, Mat. Sb., 183:4 (1992), 118–142 ; Russian Acad. Sci. Sb. Math., 75:2 (1993), 535–556 |
13
|
|
1991 |
16. |
M. A. Sychev, “A classical problem of the calculus of variations”, Dokl. Akad. Nauk SSSR, 319:2 (1991), 292–295 ; Dokl. Math., 44:1 (1992), 116–120 |
17. |
M. A. Sychev, “Regularity of solutions of some variational problems”, Dokl. Akad. Nauk SSSR, 316:6 (1991), 1326–1330 ; Dokl. Math., 43:1 (1991), 292–296 |
|
|
18. |
M. A. Sychev, “Erratum: “A classical problem of the calculus of variations””, Dokl. Akad. Nauk SSSR, 321:6 (1991), 1128 |
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|