Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 5, Pages 1150–1158
DOI: https://doi.org/10.17377/smzh.2017.58.516
(Mi smj2926)
 

This article is cited in 2 scientific papers (total in 2 papers)

Variational field theory from the point of view of direct methods

M. A. Sychevab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (294 kB) Citations (2)
References:
Abstract: In this paper we show that the classical field theory of Weierstrass–Hilbert can be strengthen on applying direct methods. Concretely, given a field of extremals and an extremal that is an element of the field, we can show that the latter gives minimum in the class of Lipschitz functions with the same boundary data and with the graphs in the set covered by the field. We suggest the two proofs: a modern one (exploiting Tonelli's Theorem on lower semicontinuity of integral functionals with respect to the weak convergence of admissible functions in $W^{1,1}$) and the one based only on arguments available already in the 19th century.
Keywords: integral functionals, ellipticity, Euler equation, minimizer, filed theory, direct methods.
Received: 12.01.2017
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 5, Pages 891–898
DOI: https://doi.org/10.1134/S0037446617050160
Bibliographic databases:
Document Type: Article
UDC: 517.972/974
MSC: 35R30
Language: Russian
Citation: M. A. Sychev, “Variational field theory from the point of view of direct methods”, Sibirsk. Mat. Zh., 58:5 (2017), 1150–1158; Siberian Math. J., 58:5 (2017), 891–898
Citation in format AMSBIB
\Bibitem{Syc17}
\by M.~A.~Sychev
\paper Variational field theory from the point of view of direct methods
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 5
\pages 1150--1158
\mathnet{http://mi.mathnet.ru/smj2926}
\crossref{https://doi.org/10.17377/smzh.2017.58.516}
\elib{https://elibrary.ru/item.asp?id=29947479}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 5
\pages 891--898
\crossref{https://doi.org/10.1134/S0037446617050160}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413438200016}
\elib{https://elibrary.ru/item.asp?id=31068013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032015600}
Linking options:
  • https://www.mathnet.ru/eng/smj2926
  • https://www.mathnet.ru/eng/smj/v58/i5/p1150
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :37
    References:36
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024