|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
G. N. Kuvyrkin, A. A. Sokolov, “Solution of the problem of stress-strain state of a plate with an elliptical cut under mechanical and temperature loads in a nonlocal formulation”, Prikl. Mekh. Tekh. Fiz., 65:4 (2024), 193–203 |
2. |
G. N. Kuvyrkin, D. R. Rakhimov, “Computational algorithm for analyzing the governing relations of the endochronic theory of thermoplasticity for isotropic materials”, Prikl. Mekh. Tekh. Fiz., 65:3 (2024), 116–122 |
|
2022 |
3. |
V. S. Zarubin, V. N. Zimin, G. N. Kuvyrkin, I. Yu. Savelyeva, “Dual variational model of the temperature state of the disk of a unipolar generator”, Prikl. Mekh. Tekh. Fiz., 63:1 (2022), 113–121 ; J. Appl. Mech. Tech. Phys., 63:1 (2022), 96–103 |
4. |
G. N. Kuvyrkin, I. Yu. Savelyeva, A. V. Zhuravsky, “Simulation of thermophysical processes during deposition of a semitransparent coating on a cooled curvilinear substrate”, TVT, 60:6 (2022), 916–921 ; High Temperature, 60:6 (2022), 848–853 |
1
|
|
2019 |
5. |
V. S. Zarubin, V. N. Zimin, G. N. Kuvyrkin, “Temperature state of a hollow cylinder made of a polymer dielectric with temperature-dependent characteristics”, Prikl. Mekh. Tekh. Fiz., 60:1 (2019), 69–78 ; J. Appl. Mech. Tech. Phys., 60:1 (2019), 59–67 |
3
|
|
2018 |
6. |
V. S. Zarubin, G. N. Kuvyrkin, I. Yu. Savelyeva, “The variational form of the mathematical model of a thermal explosion in a solid body with temperature-dependent thermal conductivity”, TVT, 56:2 (2018), 235–240 ; High Temperature, 56:2 (2018), 223–228 |
11
|
|
2017 |
7. |
G. N. Kuvyrkin, I. Yu. Savelyeva, A. V. Zhuravsky, “Numerical modelling of vapor phase epitaxy with diffusion processes”, Matem. Mod., 29:10 (2017), 75–85 ; Math. Models Comput. Simul., 10:3 (2018), 299–307 |
11
|
8. |
V. S. Zarubin, V. N. Zimin, G. N. Kuvyrkin, “Temperature distribution in the spherical shell of a gauge-adjusting satellite”, Prikl. Mekh. Tekh. Fiz., 58:6 (2017), 149–157 ; J. Appl. Mech. Tech. Phys., 58:6 (2017), 1083–1090 |
17
|
9. |
V. S. Zarubin, G. N. Kuvyrkin, I. Yu. Savelyeva, “Dual variational formulation of the electrostatic problem in an inhomogeneous anisotropic dielectric”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 3, 8–16 ; Moscow University Mathematics Bulletin, 72:3 (2017), 94–101 |
1
|
10. |
V. S. Zarubin, G. N. Kuvyrkin, I. Yu. Savelyeva, “The variational approach to estimation of the dielectric permittivity of a unidirectional fibrous composite”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 1, 3–11 ; Moscow University Mathematics Bulletin, 72:1 (2017), 1–9 |
|
2016 |
11. |
V. S. Zarubin, G. N. Kuvyrkin, I. Yu. Savelyeva, “Critical and optimal thicknesses of thermal insulation in radiative–convective heat transfer”, TVT, 54:6 (2016), 883–888 ; High Temperature, 54:6 (2016), 831–836 |
13
|
|
2015 |
12. |
V. S. Zarubin, G. N. Kuvyrkin, I. Yu. Savelyeva, “Radiative-conductive heat transfer in a spherical cavity”, TVT, 53:2 (2015), 243–249 ; High Temperature, 53:2 (2015), 234–239 |
12
|
|
2014 |
13. |
V. S. Zarubin, G. N. Kuvyrkin, I. Yu. Savelyeva, “Effective thermal conductivity of a composite in case of inclusions shape deviations from spherical ones”, Mat. Mod. Chisl. Met., 2014, no. 4, 3–17 |
14. |
V. S. Zarubin, G. N. Kuvyrkin, I. Yu. Savelyeva, “Mechanical analog modeling of the inelastic non-isothermal deformation processes”, Mat. Mod. Chisl. Met., 2014, no. 3, 25–38 |
15. |
V. S. Zarubin, G. N. Kuvyrkin, “Special features of mathematical modeling of technical instruments”, Mat. Mod. Chisl. Met., 2014, no. 1, 5–17 |
15
|
|
2013 |
16. |
G. N. Kuvyrkin, I. Y. Savelyeva, “Numerical solution of an integrodifferential equation of heat conduction for nonlocal medium”, Matem. Mod., 25:5 (2013), 99–108 ; Math. Models Comput. Simul., 6:1 (2014), 1–8 |
2
|
17. |
V. S. Zarubin, G. N. Kuvyrkin, “Two-sided estimates for thermal resistance of an inhomogeneous solid body”, TVT, 51:4 (2013), 578–585 ; High Temperature, 51:4 (2013), 519–525 |
7
|
|
2005 |
18. |
G. N. Kuvyrkin, I. S. Fedulova, “Analysis of the kinetics of phase transitions in alloys with shape memory effect”, TVT, 43:1 (2005), 121–126 ; High Temperature, 43:1 (2005), 125–130 |
|
2003 |
19. |
V. S. Zarubin, G. N. Kuvyrkin, “Mathematical modeling of thermomechanical processes under intense thermal effect”, TVT, 41:2 (2003), 300–309 ; High Temperature, 41:2 (2003), 257–265 |
12
|
|
1999 |
20. |
G. N. Kuvyrkin, A. D. Erokhina, “Singularities of constructing a mathematical model of transient heat conduction under conditions of highly intensive heating”, TVT, 37:3 (1999), 521–524 ; High Temperature, 37:3 (1999), 498–501 |
|
1996 |
21. |
N. N. Golovin, G. N. Kuvyrkin, “Special features of calculation of elements of high-temperature structures of carbon–carbon composite materials”, TVT, 34:5 (1996), 761–769 ; High Temperature, 34:5 (1996), 750–758 |
|
1995 |
22. |
V. S. Zarubin, G. N. Kuvyrkin, “A thermomechanical model of a relaxing solid body subjected to time-dependent loading”, Dokl. Akad. Nauk, 345:2 (1995), 193–195 |
1
|
|
1992 |
23. |
G. N. Kuvyrkin, “О теплопроводности твердых тел при высокоинтенсивном нагреве (№ 1839-В-92Деп. от 04.06.1992)”, TVT, 30:6 (1992), 1242–1243 |
|
1990 |
24. |
E. N. Baidakov, G. N. Kuvyrkin, “An alternative method for the numerical solution of the integrodifferential heat-conduction equation”, Zh. Vychisl. Mat. Mat. Fiz., 30:1 (1990), 156–161 ; U.S.S.R. Comput. Math. Math. Phys., 30:1 (1990), 118–122 |
|
1987 |
25. |
G. N. Kuvyrkin, “Thermodynamic derivation of the hyperbolic heat-conduction equation”, TVT, 25:1 (1987), 78–82 ; High Temperature, 25:1 (1987), 68–73 |
3
|
|
|
|
2017 |
26. |
V. S. Zarubin, A. P. Krishchenko, G. N. Kuvyrkin, “К 150-летию математической подготовки в МГТУ им. Н.Э. Баумана”, Matem. Mod., 29:10 (2017), 3–4 |
|
Organisations |
|
|
|
|