|
|
Publications in Math-Net.Ru |
Citations |
|
2019 |
1. |
A. A. Egorov, L. A. Sevastyanov, V. D. Shigorin, A. S. Ayriyan, E. A. Ayriyan, “Properties of nematic LC planar and smoothly-irregular waveguide structures: research in the experiment and using computer modeling”, Computer Optics, 43:6 (2019), 976–982 |
1
|
|
2018 |
2. |
A. S. Ayriyan, E. A. Ayrjan, A. A. Egorov, I. A. Maslyanitsyn, V. D. Shigorin, “Numeric modeling of static electric field effect on nematic liquid crystal director orientation”, Matem. Mod., 30:4 (2018), 97–107 ; Math. Models Comput. Simul., 10:6 (2018), 714–720 |
5
|
|
2014 |
3. |
A. A. Egorov, A. L. Sevastyanov, E. A. Ayryan, L. A. Sevastianov, “Stable computer modeling of thin-film generalized waveguide Luneburg lens”, Matem. Mod., 26:11 (2014), 37–44 |
4
|
4. |
A. A. Egorov, L. A. Sevastyanov, A. L. Sevastyanov, “Method of adiabatic modes in research of smoothly irregular integrated optical waveguides: zero approximation”, Kvantovaya Elektronika, 44:2 (2014), 167–173 [Quantum Electron., 44:2 (2014), 167–173 ] |
9
|
|
2012 |
5. |
A. A. Egorov, “Theoretical and numerical analysis of propagation and scattering of eigen- and non-eigenmodes of an irregular integrated-optical waveguide”, Kvantovaya Elektronika, 42:4 (2012), 337–344 [Quantum Electron., 42:4 (2012), 337–344 ] |
8
|
6. |
E. A. Hayryan, A. A. Egorov, A. L. Sevast'yanov, K. P. Lovetskii, L. A. Sevast'yanov, “Application of adiabatic modes method for calculation and design of thin-film waveguide generalized Luneburg lens”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2012, no. 3, 35–45 |
|
2011 |
7. |
A. A. Egorov, “Study of bifurcation processes in a multimode waveguide with statistical irregularities”, Kvantovaya Elektronika, 41:10 (2011), 911–916 [Quantum Electron., 41:10 (2011), 911–916 ] |
3
|
8. |
A. A. Egorov, “Theoretical, experimental and numerical methods for investigating the characteristics of laser radiation scattered in the integrated-optical waveguide with three-dimensional irregularities”, Kvantovaya Elektronika, 41:7 (2011), 644–649 [Quantum Electron., 41:7 (2011), 644–649 ] |
7
|
|
2010 |
9. |
A. A. Egorov, A. L. Sevastyanov, E. A. Ayrjan, K. P. Lovetskiy, L. A. Sevastianov, “Zero approximation of vector model for smoothly-irregular optical waveguide”, Matem. Mod., 22:8 (2010), 42–54 |
11
|
10. |
A. A. Egorov, K. P. Lovetskii, A. L. Sevastyanov, L. A. Sevastyanov, “Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation”, Kvantovaya Elektronika, 40:9 (2010), 830–836 [Quantum Electron., 40:9 (2010), 830–836 ] |
18
|
11. |
A. A. Egorov, A. V. Stavtsev, “Specifics of the development of algorithms and programs
for computing the main characteristics of integrated-optical waveguides”, Num. Meth. Prog., 11:2 (2010), 184–192 |
1
|
|
2009 |
12. |
A. A. Egorov, L. A. Sevastyanov, “Structure of modes of a smoothly irregular integrated-optical four-layer three-dimensional waveguide”, Kvantovaya Elektronika, 39:6 (2009), 566–574 [Quantum Electron., 39:6 (2009), 566–574 ] |
27
|
|
2008 |
13. |
A. A. Egorov, M. A. Egorov, T. K. Chekhlova, A. G. Timakin, “Study of a computer-controlled integrated optical gas-concentration sensor”, Kvantovaya Elektronika, 38:8 (2008), 787–790 [Quantum Electron., 38:8 (2008), 787–790 ] |
7
|
|
2004 |
14. |
A. A. Egorov, “Vector theory of laser radiation scattering in an integrated optical waveguide with three-dimensional irregularities in the presence of noise”, Kvantovaya Elektronika, 34:8 (2004), 744–754 [Quantum Electron., 34:8 (2004), 744–754 ] |
7
|
|
2003 |
15. |
A. A. Egorov, “Reconstruction of the experimental autocorrelation function and determination of the parameters of the statistical roughness of a surface from laser radiation scattering in an integrated-optical waveguide”, Kvantovaya Elektronika, 33:4 (2003), 335–341 [Quantum Electron., 33:4 (2003), 335–341 ] |
13
|
|
2002 |
16. |
A. A. Egorov, “Using waveguide scattering of laser radiation for determining the autocorrelation function of statistical surface roughness within a wide range of changes of the roughness correlation interval”, Kvantovaya Elektronika, 32:4 (2002), 357–361 [Quantum Electron., 32:4 (2002), 357–361 ] |
8
|
|
2001 |
17. |
V. A. Aleshkevich, V. A. Vyslouh, A. A. Egorov, Ya. V. Kartashov, “Formation and stability of optical surface waves at the interface between a metal and a photorefractive crystal with drift and diffusion components of the nonlinear response”, Kvantovaya Elektronika, 31:8 (2001), 713–718 [Quantum Electron., 31:8 (2001), 713–718 ] |
7
|
|
1999 |
18. |
D. V. Baranov, A. A. Egorov, E. M. Zolotov, “Analysis of the complex response of a heterodyne differential interferometer to a microstep profile”, Kvantovaya Elektronika, 26:1 (1999), 69–72 [Quantum Electron., 29:1 (1999), 69–72 ] |
2
|
|
1998 |
19. |
D. V. Baranov, A. A. Egorov, E. M. Zolotov, K. K. Svidzinsky, “Determination of the parameters of a microscopic object from a complex response of a differential microscope”, Kvantovaya Elektronika, 25:9 (1998), 838–842 [Quantum Electron., 28:9 (1998), 817–820 ] |
|
1996 |
20. |
D. V. Baranov, A. A. Egorov, E. M. Zolotov, K. K. Svidzinsky, “Enhancement of the response of a differential-phase heterodyne microscope with spatial signal filtering”, Kvantovaya Elektronika, 23:9 (1996), 854–856 [Quantum Electron., 26:9 (1996), 833–835 ] |
21. |
D. V. Baranov, A. A. Egorov, E. M. Zolotov, K. K. Svidzinsky, “Formation of the image of a microstep profile in a heterodyne differential-phase microscope”, Kvantovaya Elektronika, 23:4 (1996), 368–369 [Quantum Electron., 26:4 (1996), 360–364 ] |
|
Organisations |
|
|
|
|