|
|
Publications in Math-Net.Ru |
Citations |
|
2016 |
1. |
I. M. Novitskii, “Some properties of the resolvent kernels for integral equations with
bi-Carleman kernels”, Dal'nevost. Mat. Zh., 16:2 (2016), 186–208 |
1
|
|
2012 |
2. |
I. M. Novitskii, “A Kernel Smoothing Method for General Integral Equations”, Dal'nevost. Mat. Zh., 12:2 (2012), 255–261 |
2
|
|
2009 |
3. |
I. M. Novitskii, “On the convergence of polynomial Fredholm series”, Dal'nevost. Mat. Zh., 9:1-2 (2009), 131–139 |
|
2002 |
4. |
I. M. Novitskii, “Fredholm formulae for kernels which are linear with respect to parameter”, Dal'nevost. Mat. Zh., 3:2 (2002), 173–194 |
2
|
|
1992 |
5. |
I. M. Novitskii, “Unitary equivalence between linear operators and integral operators with smooth kernels”, Differ. Uravn., 28:9 (1992), 1608–1616 ; Differ. Equ., 28:9 (1992), 1329–1337 |
1
|
|
1991 |
6. |
I. M. Novitskii, “Reduction of linear operators in $L_2$ to integral form with
smooth kernels”, Dokl. Akad. Nauk SSSR, 318:5 (1991), 1088–1091 ; Dokl. Math., 43:3 (1991), 874–877 |
2
|
|
1988 |
7. |
I. M. Novitskii, “Integral representation of completely continuous operators in $L_2$”, Sibirsk. Mat. Zh., 29:3 (1988), 203–207 ; Siberian Math. J., 29:3 (1988), 499–503 |
|
1984 |
8. |
I. M. Novitskii, “Representation of kernels of integral operators by bilinear series”, Sibirsk. Mat. Zh., 25:5 (1984), 114–118 ; Siberian Math. J., 25:5 (1984), 774–778 |
3
|
|
Organisations |
|
|
|
|