Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2012, Volume 12, Number 2, Pages 255–261 (Mi dvmg244)  

This article is cited in 2 scientific papers (total in 2 papers)

A Kernel Smoothing Method for General Integral Equations

I. M. Novitskii

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences
Full-text PDF (135 kB) Citations (2)
References:
Abstract: In this paper, we reduce the general linear integral equation of the third kind in $L^2(Y,\mu)$, with largely arbitrary kernel and coefficient, to an equivalent integral equation either of the second kind or of the first kind in $L^2(\mathbb{R})$, with the kernel being the linear pencil of bounded infinitely differentiable bi-Carleman kernels expandable in absolutely and uniformly convergent bilinear series. The reduction is done by using unitary equivalence transformations.
Key words: linear integral equations of the first, second, and third kind, unitary operator, multiplication operator, bi-integral operator, bi-Carleman kernel, Hilbert-Schmidt kernel, bilinear series expansions of kernels.
Received: 15.08.2012
Document Type: Article
UDC: 517.983:517.968
MSC: Primary 45A05; Secondary 45P05
Language: English
Citation: I. M. Novitskii, “A Kernel Smoothing Method for General Integral Equations”, Dal'nevost. Mat. Zh., 12:2 (2012), 255–261
Citation in format AMSBIB
\Bibitem{Nov12}
\by I.~M.~Novitskii
\paper A Kernel Smoothing Method for General Integral Equations
\jour Dal'nevost. Mat. Zh.
\yr 2012
\vol 12
\issue 2
\pages 255--261
\mathnet{http://mi.mathnet.ru/dvmg244}
Linking options:
  • https://www.mathnet.ru/eng/dvmg244
  • https://www.mathnet.ru/eng/dvmg/v12/i2/p255
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
    Statistics & downloads:
    Abstract page:280
    Full-text PDF :113
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024