|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
V. E. Berezovskii, S. V. Leshchenko, J. Mikeš, “On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 226 (2023), 23–33 |
|
2021 |
2. |
V. E. Berezovskii, N. I. Guseva, J. Mikeš, “Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces”, Mat. Zametki, 110:2 (2021), 309–312 ; Math. Notes, 110:2 (2021), 293–296 |
3
|
|
2018 |
3. |
V. E. Berezovskii, L. E. Kovalev, J. Mikeš, “On preservation of the Riemann tensor with respect to some mappings of space with affine connection”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 9, 3–10 ; Russian Math. (Iz. VUZ), 62:9 (2018), 1–6 |
7
|
4. |
V. E. Berezovskii, I. Hinterleitner, N. I. Guseva, J. Mikeš, “Conformal Mappings of Riemannian Spaces onto Ricci Symmetric Spaces”, Mat. Zametki, 103:2 (2018), 303–306 ; Math. Notes, 103:2 (2018), 304–307 |
6
|
|
2017 |
5. |
V. E. Berezovskii, J. Mikeš, H. Chudá, O. Y. Chepurnaya, “On canonical almost geodesic mappings which preserve the Weyl projective tensor”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 6, 3–8 ; Russian Math. (Iz. VUZ), 61:6 (2017), 1–5 |
17
|
|
2015 |
6. |
J. Mikeš, V. E. Berezovskii, E. Stepanova, H. Chudá, “Geodesic mappings and their generalizations”, Contemporary Mathematics and Its Applications, 96 (2015), 82–97 ; Journal of Mathematical Sciences, 217:5 (2016), 607–623 |
20
|
7. |
V. E. Berezovskii, N. I. Guseva, J. Mikesh, “On Special First-Type Almost Geodesic Mappings of Affine Connection Spaces Preserving a Certain Tensor”, Mat. Zametki, 98:3 (2015), 463–466 ; Math. Notes, 98:3 (2015), 515–518 |
15
|
|
2014 |
8. |
V. E. Berezovskii, J. Mikeš, “Canonical almost geodesic mappings of the first type of manifolds with affine connection”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 2, 3–8 ; Russian Math. (Iz. VUZ), 58:2 (2014), 1–5 |
14
|
|
2009 |
9. |
V. E. Berezovski, J. Mikeš, “Almost Geodesic Mappings of Type $\pi_1$ onto Generalized Ricci-symmetric Spaces”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:4 (2009), 9–14 |
8
|
|
Organisations |
|
|
|
|