Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 9, Pages 3–10 (Mi ivm9392)  

This article is cited in 7 scientific papers (total in 7 papers)

On preservation of the Riemann tensor with respect to some mappings of space with affine connection

V. E. Berezovskiia, L. E. Kovaleva, J. Mikešb

a Uman National University of Horticulture, 1 Institutskaya str., Uman, Cherkasy Obl., 20305 Ukraine
b Palacký University, 12 17 listopadu str., Olomouc, 77146 Czech Republic
Full-text PDF (189 kB) Citations (7)
References:
Abstract: This paper is devoted to geodesic and almost geodesic mappings of spaces with affine connection. We find conditions which ensure that the Riemann tensor is an invariant geometric object with respect to the studied mappings. In this work we present an example of the non-trivial geodesic mappings between the flat spaces.
Keywords: Riemann tensor, geodesic mapping, almost geodesic mapping.
Received: 07.07.2017
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, Volume 62, Issue 9, Pages 1–6
DOI: https://doi.org/10.3103/S1066369X18090013
Bibliographic databases:
Document Type: Article
UDC: 514.764
Language: Russian
Citation: V. E. Berezovskii, L. E. Kovalev, J. Mikeš, “On preservation of the Riemann tensor with respect to some mappings of space with affine connection”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 9, 3–10; Russian Math. (Iz. VUZ), 62:9 (2018), 1–6
Citation in format AMSBIB
\Bibitem{BerKovMik18}
\by V.~E.~Berezovskii, L.~E.~Kovalev, J.~Mike{\v s}
\paper On preservation of the Riemann tensor with respect to some mappings of space with affine connection
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 9
\pages 3--10
\mathnet{http://mi.mathnet.ru/ivm9392}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 9
\pages 1--6
\crossref{https://doi.org/10.3103/S1066369X18090013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443877800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052830310}
Linking options:
  • https://www.mathnet.ru/eng/ivm9392
  • https://www.mathnet.ru/eng/ivm/y2018/i9/p3
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :48
    References:37
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024