|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
A. N. Kvitko, N. N. Litvinov, “Solution of the local boundary problem for nonlinear stationary system with account of the computer systems verification”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 11:2 (2024), 303–315 |
|
2022 |
2. |
A. N. Kvitko, N. N. Litvinov, “Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:1 (2022), 18–36 |
1
|
|
2021 |
3. |
A. N. Kvitko, “On a method for solving a local boundary value problem for a nonlinear stationary controlled system in the class of differentiable controls”, Zh. Vychisl. Mat. Mat. Fiz., 61:4 (2021), 555–570 ; Comput. Math. Math. Phys., 61:4 (2021), 527–541 |
1
|
|
2020 |
4. |
A. N. Kvitko, “A method for solving a local boundary-value problem for a nonlinear controlled system”, Avtomat. i Telemekh., 2020, no. 2, 48–61 ; Autom. Remote Control, 81:2 (2020), 236–246 |
2
|
5. |
S. V. Chistyakov, A. N. Kvitko, D. B. Kichinsky, M. E. Vasetsov, I. S. Uspasskaya, “A system of models for constructing a progressive income tax schedule”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:1 (2020), 4–18 |
|
2018 |
6. |
A. N. Kvitko, “Solving a local boundary value problem for a nonlinear nonstationary system in the class of feedback controls”, Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018), 70–82 ; Comput. Math. Math. Phys., 58:1 (2018), 65–77 |
1
|
|
2015 |
7. |
A. N. Kvitko, “Solving the global boundary problem for a nonlinear nonstationary controllable system”, Avtomat. i Telemekh., 2015, no. 1, 57–80 ; Autom. Remote Control, 76:1 (2015), 44–63 |
|
2012 |
8. |
A. N. Kvitko, “On one method of solving a boundary problem for a nonlinear nonstationary controllable system taking measurement results into account”, Avtomat. i Telemekh., 2012, no. 12, 89–109 ; Autom. Remote Control, 73:12 (2012), 2021–2037 |
7
|
|
2010 |
9. |
A. N. Kvitko, “A method for solving a boundary value problem for a nonlinear control system with incomplete information”, Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010), 1393–1407 ; Comput. Math. Math. Phys., 50:8 (2010), 1324–1337 |
|
2006 |
10. |
A. N. Kvitko, “A method for solving a boundary problem for a nonlinear controlled system”, Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006), 1241–1250 ; Comput. Math. Math. Phys., 46:7 (2006), 1176–1185 |
|
2004 |
11. |
A. N. Kvitko, “On a Control Problem”, Differ. Uravn., 40:6 (2004), 740–746 ; Differ. Equ., 40:6 (2004), 789–796 |
9
|
|
1981 |
12. |
A. N. Kvitko, “The Riemann problem with a $p$-nonsingular coefficient for a generalized analytic vector in the case of a complex contour on a Riemann surface”, Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 9, 19–23 |
|
1979 |
13. |
A. N. Kvitko, “On the theory of the Riemann boundary value problem for generalized analytic functions, in the case of a multiple contour on a plane”, Sibirsk. Mat. Zh., 20:3 (1979), 659–663 ; Siberian Math. J., 20:3 (1979), 460–463 |
|
|
|
2011 |
14. |
L. A. Petrosyan, A. N. Pokrovskij, V. F. Demyanov, A. F. Zubova, A. V. Zubov, S. V. Zubov, I. V. Zubov, L. D. Blistanova, A. P. Zhabko, A. N. Kvitko, M. V. Strekopytova, O. A. Malafeev, O. V. Mutlu, O. N. Chizhova, A. V. Prasolov, A. I. Ivanov, L. A. Vakhnina, A. I. Zubov, V. I. Zubov, A. A. Klemina, I. V. Koltsov, N. I. Koltsova, V. A. Kudinova, E. V. Strel'tsova, E. G. Shastin, S. I. Kondratyeva, “The memory of N. V. Zubov”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 2, 97–98 |
|
Organisations |
|
|
|
|