|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
N. M. Dmitruk, “A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance”, Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024), 122–138 |
|
2023 |
2. |
Natalia M. Dmitruk, Maria A. Hatavets, “A support vector machine based synthesis of suboptimal feedbacks for linear optimal control problems”, Bulletin of Irkutsk State University. Series Mathematics, 46 (2023), 19–34 |
3. |
N. M. Dmitruk, “Closed-loop state feedback in linear problems of terminal control”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224 (2023), 43–53 |
|
2022 |
4. |
N. M. Dmitruk, E. A. Manzhulina, “Optimal control of linear time-invariant discrete-time systems without prior parametric identification”, Avtomat. i Telemekh., 2022, no. 2, 3–21 ; Autom. Remote Control, 83:2 (2022), 165–179 |
5. |
N. M. Dmitruk, “Multiply Closed Control Strategy in a Linear Terminal Problem of Optimal Guaranteed Control”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:3 (2022), 66–82 ; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S112–S128 |
3
|
|
2021 |
6. |
N. M. Dmitruk, D. A. Kastsiukevich, “Improving the quality of the control process in a linear terminal problem on optimal strategies with closures”, Tr. Inst. Mat., 29:1-2 (2021), 74–84 |
|
2020 |
7. |
R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “On the problem of optimal control of dynamic systems in real time”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 183 (2020), 98–112 |
|
2019 |
8. |
N. M. Dmitruk, “Stabilization of coupled linear systems via bounded distributed feedbacks”, Bulletin of Irkutsk State University. Series Mathematics, 30 (2019), 31–44 |
|
2018 |
9. |
N. M. Dmitruk, “Optimal strategy with one closing instant for a linear optimal guaranteed control problem”, Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018), 664–681 ; Comput. Math. Math. Phys., 58:5 (2018), 642–658 |
6
|
|
2016 |
10. |
N. M. Dmitruk, A. I. Kalinin, “Asymptotically suboptimal control of weakly interconnected dynamical systems”, Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016), 1711–1724 ; Comput. Math. Math. Phys., 56:10 (2016), 1695–1707 |
|
2014 |
11. |
N. M. Dmitruk, “Optimal observation of multistage systems”, Zh. Vychisl. Mat. Mat. Fiz., 54:11 (2014), 1734–1751 ; Comput. Math. Math. Phys., 54:11 (2014), 1669–1685 |
|
2011 |
12. |
R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “On optimal control methods to dynamical object at its approaching to a mobile aim”, Bulletin of Irkutsk State University. Series Mathematics, 4:2 (2011), 60–74 |
13. |
R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “Decentralized optimal control of dynamical systems under uncertainty”, Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011), 1209–1227 ; Comput. Math. Math. Phys., 51:7 (2011), 1128–1145 |
4
|
|
2010 |
14. |
R. Gabasov, N. M. Dmitruk, F. M. Kirillova, E. I. Poyasok, “Optimal control problems with moving targets”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010), 16–21 |
3
|
|
2009 |
15. |
R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “Optimal control under permanent disturbances”, Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009), 52–68 ; Proc. Steklov Inst. Math. (Suppl.), 269, suppl. 1 (2010), S103–S120 |
2
|
|
2008 |
16. |
R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “Decentralized optimal control of a group of dynamical objects”, Zh. Vychisl. Mat. Mat. Fiz., 48:4 (2008), 593–609 ; Comput. Math. Math. Phys., 48:4 (2008), 561–576 |
9
|
|
2006 |
17. |
R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “Parallelization of computations in the optimal control of large dynamical systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 12, 3–20 ; Russian Math. (Iz. VUZ), 50:12 (2006), 1–17 |
1
|
18. |
R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “Optimal guaranteed control of delay systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 12:2 (2006), 27–46 ; Proc. Steklov Inst. Math. (Suppl.), 255, suppl. 2 (2006), S26–S46 |
2
|
|
2005 |
19. |
R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “Numerical optimization of time-dependent multidimensional systems under polyhedral constraints”, Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005), 617–636 ; Comput. Math. Math. Phys., 45:4 (2005), 593–612 |
8
|
|
2004 |
20. |
R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “Optimal control of multidimensional systems by inaccurate measurements of their output signals”, Trudy Inst. Mat. i Mekh. UrO RAN, 10:2 (2004), 35–57 ; Proc. Steklov Inst. Math. (Suppl.), 2004no. , suppl. 2, S52–S75 |
18
|
21. |
R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “The indirect optimal control of dynamical systems”, Zh. Vychisl. Mat. Mat. Fiz., 44:3 (2004), 444–466 ; Comput. Math. Math. Phys., 44:3 (2004), 418–439 |
2
|
|
2002 |
22. |
R. Gabasov, N. M. Dmitruk, F. M. Kirillova, “Optimization of the Multidimensional Control Systems with Parallelepiped Constraints”, Avtomat. i Telemekh., 2002, no. 3, 3–26 ; Autom. Remote Control, 63:3 (2002), 345–366 |
9
|
|
2001 |
23. |
O. R. Gabasova, N. M. Dmitruk, “The Optimal Policy for Dividends, Investments, and Capital Distribution for a Dynamic Model of a Company”, Avtomat. i Telemekh., 2001, no. 8, 138–156 ; Autom. Remote Control, 62:8 (2001), 1349–1365 |
1
|
|
1998 |
24. |
R. Gabasov, O. R. Gabasova, N. M. Dmitruk, “Design of an optimal policy for an industrial-financial model of a firm. II. Programmed and positional solutions”, Avtomat. i Telemekh., 1998, no. 10, 95–112 ; Autom. Remote Control, 59:10 (1998), 1429–1442 |
1
|
25. |
R. Gabasov, O. R. Gabasova, N. M. Dmitruk, “Design of an optimal policy for an industrial-financial model of a firm. I. Construction of routes”, Avtomat. i Telemekh., 1998, no. 9, 100–117 ; Autom. Remote Control, 59:9 (1998), 1285–1298 |
4
|
|
|
|
2021 |
26. |
D. A. Kastsiukevich, N. M. Dmitruk, “A method for constructing an optimal control strategy in a linear terminal problem”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2021), 38–50 |
3
|
|
2016 |
27. |
A. V. Arguchintsev, V. A. Srochko, V. V. Al'sevich, N. M. Dmitruk, A. I. Kalinin, “Rafail Gabasov — on the occasion of the 80th birthday”, Bulletin of Irkutsk State University. Series Mathematics, 15 (2016), 108–120 |
|
Organisations |
|
|
|
|