Full list of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
2024 |
1. |
K. V. Forduk, D. A. Zakora, “The Problem on Normal Oscillations of a System of Bodies Partially Filled with Viscous Fluids under the Action of Elastic-Damping Forces”, Lobachevskii Journal of Mathematics, 45:4 (2024), 1388–1403 |
|
2023 |
2. |
D. A. Zakora, “Spectral Properties of the Operator in the Problem of Oscillations in a Mixture of Viscous Compressible Fluids”, Differential Equations, 59:4 (2023), 473–490 |
|
2024 |
3. |
D. A. Zakora, “Spectral properties of operators in the problem on normal oscillations of a mixture of viscous compressible fluids”, Journal of Mathematical Sciences, 283:2 (2024), 231–254 |
|
2023 |
4. |
D. A. Zakora, “The problem on small motions of a mixture of viscous compressible fluids”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1552–1589 |
|
2024 |
5. |
D. A. Zakora, “Asymptotic behavior of solutions of a complete second-order intergo-differential equation”, Journal of Mathematical Sciences, 282:3 (2024), 362–377 |
|
2022 |
6. |
N. D. Kopachevskii, T. Ya. Azizov, D. A. Zakora, D. O. Tsvetkov, Operatornye metody v prikladnoi matematike. Spetskursy., v. 2, Tom II. Osnovnye kursy, IT «ARIAL», Simferopol, 2022 , 536 pp. http://kromsh.info/kopachevsky/monography/knd_tom2/ |
|
2021 |
7. |
D. A. Zakora, K. V. Forduk, “A problem of normal oscillations of a system of bodies partially filled with ideal fluids under the action of an elastic damping device”, Sib. elektron. matem. izv., 18:2 (2021), 997–1014
|
2
[x]
|
8. |
K. V. Forduk, D. A. Zakora, “Problem on small motions of a system of bodies filled with ideal fluids under the action of an elastic damping device”, Lobachevskii J. Math., 42:5 (2021), 889–900
|
2
[x]
|
9. |
D. A. Zakora, “Forced motions of thermoelastic systems of memory type”, Lobachevskii J. Math., 42:5 (2021), 1124–1139 |
10. |
N. D. Kopachevskii, V. I. Voititskii, D. A. Zakora, V. P. Smolich, D. O. Tsvetkov, Operatornye metody v prikladnoi matematike. Spetskursy., v. 1, Tom I. Vvodnye kursy, IT «ARIAL», Simferopol, 2021 , 436 pp. http://kromsh.info/kopachevsky/monography/knd_tom1/ |
|
2022 |
11. |
D. A. Zakora, N. D. Kopachevsky, “To the problem of small oscillations of a system of two viscoelastic fluids filling immovable vessel: model problem”, Journal of Mathematical Sciences, 265:6 (2022), 888–912 |
12. |
D. A. Zakora, “Representation of solutions of a certain integro-differential equation and applications”, Journal of Mathematical Sciences, 263:5 (2022), 675–690 |
|
2019 |
13. |
D. A. Zakora, “Asymptotics of solutions in the problem about small motions of a compressible Maxwell fluid”, Differential Equations, 55:9 (2019), 1150–1163 |
|
2022 |
14. |
D. A. Zakora, “Operator approach to the problem on small motions of an ideal relaxing fluid”, Journal of Mathematical Sciences, 236:6 (2022), 773–804 |
|
2018 |
15. |
D. A. Zakora, “Exponential Stability of a Certain Semigroup and Applications”, Math. Notes, 103:5 (2018), 745–760 |
16. |
D. A. Zakora, “Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations”, Sib. Èlektron. Mat. Izv., 15 (2018), 971–986 |
17. |
D. A. Zakora, “Spectral analysis of a viscoelasticity problem”, Comput. Math. Math. Phys., 58:11 (2018), 1761–1774 |
|
2020 |
18. |
D. A. Zakora, “Model of the Maxwell compressible fluid”, Journal of Mathematical Sciences, 250:4 (2020), 593–610 |
|
2017 |
19. |
D. Zakora, “On properties of root elements in the problem on small motions of viscous relaxing fluid”, Zhurn. matem. fiz., anal., geom., 13:4 (2017), 402–413
|
1
[x]
|
20. |
D. A. Zakora, “On root elements of an operator matrix”, Taurida Journal of Computer Science Theory and Mathematics, 2017, no. 2, 33–47 |
|
2019 |
21. |
D. A. Zakora, “Oldroyd model for compressible fluids”, Journal of Mathematical Sciences, 239:5 (2019), 582–607 |
|
2016 |
22. |
D. A. Zakora, “Abstract linear Volterra second-order integro-differential equations”, Eurasian Math. J., 7:2 (2016), 75–91
|
1
[x]
|
23. |
D. A. Zakora, “On stabilization of solutions of integrodifferential incomplete second-order equations”, Izv. Vyssh. Uchebn. Zaved., 60:9 (2016), 69–73 |
24. |
D. Zakora, “On the spectrum of rotating viscous relaxing fluid”, Matem. fiz., anal., geom., 12:4 (2016), 338–358
|
3
[x]
|
|
2017 |
25. |
D. A. Zakora, “Operator approach to the ilyushin model for a viscoelastic body of parabolic type”, Journal of Mathematical Sciences, 225:2 (2017), 345–381 |
|
2012 |
26. |
D. Zakora, “A symmetric model of viscous relaxing fluid. An evolution problem”, Zhurn. matem. fiz., anal., geom., 8:2 (2012), 190–206
|
2
[x]
|
|
2010 |
27. |
D. A. Zakora, “Problem of small and normal oscillations of a rotating elastic body filled with an ideal barotropic liquid”, Journal of Mathematical Sciences, 170:2 (2010), 173–191 |
28. |
D. A. Zakora, “Problem on small motions of ideal rotating relaxing fluid”, Journal of Mathematical Sciences, 164:4 (2010), 531–539 |
|
2002 |
29. |
D. A. Zakora, N. D. Kopachevsky, “On small motions and normal oscillations of a hydrosystem “a viscous fluid + a system of ideal fluids””, Mat. Fiz. Anal. Geom., 9:3 (2002), 420–426 |
|