|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
V. I. Mazhukin, A. V. Shapranov, O. N. Koroleva, A. V. Mazhukin, “Modification of the Wilson–Frankel kinetic model and atomistic simulation of the rate of melting/crystallization of metals”, Matem. Mod., 35:11 (2023), 103–121 ; Math. Models Comput. Simul., 16:2 (2024), 223–234 |
1
|
|
2022 |
2. |
V. I. Mazhukin, O. N. Koroleva, M. M. Demin, A. V. Shapranov, A. A. Aleksashkina, “Atomistic simulation of the coexistence of liquid-vapor phase states for gold and determination of critical parameters”, Matem. Mod., 34:3 (2022), 101–116 ; Math. Models Comput. Simul., 14:5 (2022), 819–828 |
2
|
3. |
V. I. Mazhukin, O. N. Koroleva, A. V. Shapranov, M. M. Demin, A. A. Aleksashkina, “Determination of thermal properties of gold in the region of melting-crystallization phase transition. Molecular dynamic approach”, Matem. Mod., 34:1 (2022), 59–80 ; Math. Models Comput. Simul., 14:4 (2022), 662–676 |
5
|
|
2021 |
4. |
V. I. Mazhukin, A. V. Shapranov, O. N. Koroleva, A. V. Mazhukin, “Atomistic modeling of the propagation of the melting/crystallization front for metals based on the generalization of the modified transition state theory”, Keldysh Institute preprints, 2021, 090, 20 pp. |
5. |
V. I. Mazhukin, O. N. Koroleva, A. V. Shapranov, A. A. Aleksashkina, M. M. Demin, “Molecular dynamic modeling of thermal hysteresis of gold”, Keldysh Institute preprints, 2021, 081, 11 pp. |
6. |
E. N. Bykovskaya, A. V. Shapranov, V. I. Mazhukin, “Analysis of the error of approximation of two-layer difference schemes for the Korteweg de Vries equation”, Keldysh Institute preprints, 2021, 001, 17 pp. |
2
|
|
2016 |
7. |
V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, O. N. Koroleva, A. V. Mazhukin, “Kinetic melting and crystallization stages of strongly superheated and supercooled metals”, Matem. Mod., 28:12 (2016), 83–94 ; Math. Models Comput. Simul., 9:4 (2017), 448–456 |
28
|
|
2014 |
8. |
V. I. Mazhukin, A. V. Shapranov, A. A. Samokhin, A. Yu. Ivochkin, “Modeling of thin film explosive boiling process during homogeneous sub-second heating”, Matem. Mod., 26:3 (2014), 125–136 ; Math. Models Comput. Simul., 6:5 (2014), 542–550 |
3
|
9. |
V. I. Mazhukin, A. A. Samokhin, M. M. Demin, A. V. Shapranov, “Explosive boiling of metals upon irradiation by a nanosecond laser pulse”, Kvantovaya Elektronika, 44:4 (2014), 283–285 [Quantum Electron., 44:4 (2014), 283–285 ] |
23
|
|
2012 |
10. |
V. I. Mazhukin, A. V. Shapranov, “Molecular-dynamic modeling of processes of heating and melting of metals.
Part II. Computational experiment”, Keldysh Institute preprints, 2012, 032, 25 pp. |
3
|
11. |
V. I. Mazhukin, A. V. Shapranov, “Molecular-dynamic modeling of processes of heating and melting of metals.
Part I. Model and computational algorithm”, Keldysh Institute preprints, 2012, 031, 27 pp. |
4
|
|
2004 |
12. |
A. Ju. Repin, E. L. Stupitsky, A. V. Shapranov, “Dynamics of a toroidal plasma cluster and its interaction with an obstacle. Ionization and dynamic characteristics and electromagnetic radiation”, TVT, 42:4 (2004), 523–537 ; High Temperature, 42:4 (2004), 523–538 |
2
|
|
2001 |
13. |
M. M. Dëmin, V. I. Mazhukin, A. V. Shapranov, “Dynamic adaptation method for a laminar combustion problem”, Zh. Vychisl. Mat. Mat. Fiz., 41:4 (2001), 648–661 ; Comput. Math. Math. Phys., 41:4 (2001), 609–621 |
3
|
|
1993 |
14. |
V. I. Mazhukin, A. A. Samarskii, A. V. Shapranov, “The dynamic adaptation method in the Burgers problem”, Dokl. Akad. Nauk, 333:2 (1993), 165–169 ; Dokl. Math., 38:11 (1993), 455–458 |
4
|
15. |
V. I. Mazhukin, I. V. Gusev, A. V. Shapranov, “Influence of metastable states on process of pulse laser treatment of superconducting ceramics”, Matem. Mod., 5:5 (1993), 30–60 |
16. |
V. I. Mazhukin, A. A. Samarskii, O. Kastelianos, A. V. Shapranov, “Method of dynamical adaption for evolution-type problems with high gradients”, Matem. Mod., 5:4 (1993), 32–56 |
14
|
|
Organisations |
|
|
|
|