Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 2021, 001, 17 pp.
DOI: https://doi.org/10.20948/prepr-2021-1
(Mi ipmp2919)
 

This article is cited in 2 scientific papers (total in 2 papers)

Analysis of the error of approximation of two-layer difference schemes for the Korteweg de Vries equation

E. N. Bykovskaya, A. V. Shapranov, V. I. Mazhukin
References:
Abstract: A family of weighted two-layer finite-difference schemes is presented. Using the example of the numerical solution of model problems on the propagation of a single soliton and the interaction of two solitons, the high quality of explicit-implicit schemes of the Crank-Nichols type with a weight parameter of $0.5$ and a second order of approximation in the time and space variables is shown. Absolute stability with a low accuracy of the solution due to a large approximation error is characteristic of completely implicit two-layer difference schemes with a weight parameter of $l$, first order in time and second in space. A family of explicitly implicit difference schemes is absolutely unstable if the explicitness parameter less than $0.5$ prevails. Analysis of the structure of the approximation error, performed using the modified equation method, confirmed the results of numerical simulation.
Keywords: two-layer finite-difference schemes, Korteweg-de Vries equation, Euler variables, soliton solutions.
Funding agency Grant number
Russian Foundation for Basic Research 19-07-01001
Document Type: Preprint
Language: Russian
Citation: E. N. Bykovskaya, A. V. Shapranov, V. I. Mazhukin, “Analysis of the error of approximation of two-layer difference schemes for the Korteweg de Vries equation”, Keldysh Institute preprints, 2021, 001, 17 pp.
Citation in format AMSBIB
\Bibitem{BykShaMaz21}
\by E.~N.~Bykovskaya, A.~V.~Shapranov, V.~I.~Mazhukin
\paper Analysis of the error of approximation of two-layer difference schemes for the Korteweg de Vries equation
\jour Keldysh Institute preprints
\yr 2021
\papernumber 001
\totalpages 17
\mathnet{http://mi.mathnet.ru/ipmp2919}
\crossref{https://doi.org/10.20948/prepr-2021-1}
Linking options:
  • https://www.mathnet.ru/eng/ipmp2919
  • https://www.mathnet.ru/eng/ipmp/y2021/p1
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025