Hydrodinamic blow. Ordinary differential equation. Vortex dynamics. Mathematical hydrodynamic model
Main publications:
Leonid G. Kurakin, Irina V. Ostrovskaya, Mikhail A. Sokolovskiy, “On the Stability of Discrete Tripole, Quadrupole, Thomson. Vortex Triangle and Square in a Two-layer/Homogeneous Rotating Fluid”, Regul. Chaotic Dyn., 21:3 (2016), 291–334
Kurakin L.G., Ostrovskaya I.V., Sokolovskii M.A., “Ob ustoichivosti diskretnykh vikhrevykh multipolei v odnorodnoi i dvukhsloinoi vraschayuscheisya zhidkosti”, Doklady Akademii nauk, 462:2 (2015), 161–167
Kurakin, L.G., Ostrovskaya, I.V., “Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle”, Regul. Chaot. Dyn., 17:5 (2012), 385–396
L. G. Kurakin, I. V. Ostrovskaya, “On the Stability of the System of Thomson’s Vortex
$n$-Gon and a Moving Circular Cylinder”, Rus. J. Nonlin. Dyn., 18:5 (2022), 915–926
2021
2.
Leonid G. Kurakin, Irina V. Ostrovskaya, “Resonances in the Stability Problem of a Point Vortex
Quadrupole on a Plane”
L. G. Kurakin, I. V. Ostrovskaya, “On the Stability of Thomson's Vortex $N$-gon and a Vortex Tripole/Quadrupole in Geostrophic Models of Bessel Vortices and in a Two-Layer Rotating Fluid: a Review”, Rus. J. Nonlin. Dyn., 15:4 (2019), 533–542
Leonid G. Kurakin, Irina V. Ostrovskaya, “On Stability of Thomson’s Vortex $N$-gon in the Geostrophic Model of the Point Bessel Vortices”, Regul. Chaotic Dyn., 22:7 (2017), 865–879
Leonid G. Kurakin, Irina V. Ostrovskaya, Mikhail A. Sokolovskiy, “On the Stability of Discrete Tripole, Quadrupole, Thomson’ Vortex Triangle and Square in a Two-layer/Homogeneous Rotating Fluid”, Regul. Chaotic Dyn., 21:3 (2016), 291–334
L. G. Kurakin, I. V. Ostrovskaya, “The stability criterion of a regular vortex pentagon outside a circle”, Nelin. Dinam., 8:2 (2012), 355–368
7.
Leonid G. Kurakin, Irina V. Ostrovskaya, “Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle”, Regul. Chaotic Dyn., 17:5 (2012), 385–396
L. G. Kurakin, I. V. Ostrovskaya, “Stability of the Thomson vortex polygon with evenly many vortices outside a circular domain”, Sibirsk. Mat. Zh., 51:3 (2010), 584–598; Siberian Math. J., 51:3 (2010), 463–474