Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Turbin, Mikhail Vyacheslavovich

Total publications: 25 (25)
in MathSciNet: 3 (3)
in zbMATH: 1 (1)
in Web of Science: 3 (3)
in Scopus: 6 (6)
Cited articles: 19
Citations: 186
Presentations: 1

Number of views:
This page:2408
Abstract pages:3456
Full texts:1202
References:386
Associate professor
Candidate of physico-mathematical sciences
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 17.11.1979
E-mail:
Keywords: Fluid dynamics, weak solution, existence theorem, attractor
UDC: 571.988, 532, 515.126.4

Subject:

Study of the solvability and qualitative behavior of solutions to initial-boundary value problems of non-Newtonian fluid dynamics

   
Main publications:
  1. V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND, M., 2012
  2. V. G. Zvyagin, M. V. Turbin, “Issledovanie nachalno-kraevykh zadach dlya matematicheskikh modelei dvizheniya zhidkostei Kelvina-Foigta”, Sovremennaya matematika. Fundamentalnye napravleniya, 31 (2009), 3-144
  3. V. Zvyagin, M. Turbin, “Weak solvability of the initial-boundary value problem for inhomogeneous incompressible Kelvin-Voigt fluid motion model of arbitrary finite order”, Journal of Fixed Point Theory and Applications, 25:3 (2023), Article number 63
  4. M. Turbin, A. Ustiuzhaninova, “Existence of weak solution to initial-boundary value problem for finite order Kelvin-Voigt fluid motion model”, Boletín de la Sociedad Matemática Mexicana, 29:2 (2023), Article number 54
  5. M. Turbin, A. Ustiuzhaninova, “Trajectory and Global Attractors for the Kelvin-Voigt Model Taking into Account Memory along Fluid Trajectories”, Mathematics, 12:2 (2024), Article number 266

https://www.mathnet.ru/eng/person31121
List of publications on Google Scholar
https://zbmath.org/authors/ai:turbin.mikhail-v
https://mathscinet.ams.org/mathscinet/MRAuthorID/781032
https://orcid.org/0000-0003-3399-8690

Full list of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)

   2024
1. M. Turbin, A. Ustiuzhaninova, “Trajectory and Global Attractors for the Kelvin-Voigt Model Taking into Account Memory along Fluid Trajectories”, Mathematics, 12:2 (2024), 266 , 26 pp.  crossref  elib
2. M. V. Turbin, A. S. Ustiuzhaninova, “Solvability of an Initial-Boundary Value Problem for the Modified Kelvin-Voigt Model with Memory along Fluid Motion Trajectories”, Differential Equations, 60 (2024), 180-203  crossref  crossref  elib  elib
3. V. G. Zvyagin, A. V. Zvyagin, V. P. Orlov, M. V. Turbin, “On the Weak Solvability of High-order Viscoelastic Fluid Dynamics Model”, Lobachevskii Journal of Mathematics, 45 (2024), 1524-1543  crossref

   2023
4. M. Turbin, A. Ustiuzhaninova, “Existence of weak solution to initial-boundary value problem for finite order Kelvin-Voigt fluid motion model”, Boletín de la Sociedad Matemática Mexicana, 29 (2023), 54 , 37 pp.  crossref 2
5. V. G. Zvyagin, M. V. Turbin, “Solvability of the initial-boundary value problem for the Kelvin–Voigt fluid motion model with variable density”, Dokl. Math., 107:1 (2023), 9–11  mathnet  crossref  crossref  elib
6. V. G. Zvyagin, M. V. Turbin, “An Existence Theorem for Weak Solutions of the Initial–Boundary Value Problem for the Inhomogeneous Incompressible Kelvin–Voigt Model in Which the Initial Value of Density is Not Bounded from Below”, Math. Notes, 114:4 (2023), 630–634  mathnet  crossref  crossref  scopus
7. V. Zvyagin, M. Turbin, “Weak solvability of the initial-boundary value problem for inhomogeneous incompressible Kelvin-Voigt fluid motion model of arbitrary finite order”, Journal of Fixed Point Theory and Applications, 25 (2023), 63 , 41 pp.  crossref 1

   2022
8. V. G. Zvyagin, V. P. Orlov, M. V. Turbin, “Solvability of the initial-boundary value problem for the high-order Oldroyd model”, Russian Math. (Iz. VUZ), 66:7 (2022), 70–75  mathnet  crossref  crossref
9. V. G. Zvyagin, M. V. Turbin, “Existence of attractors for approximations to the Bingham model and their convergence to the attractors of the initial model”, Siberian Math. J., 63:4 (2022), 699–714  mathnet  crossref  crossref
10. M. V. Turbin, A. S. Ustiuzhaninova, “Convergence of attractors for an approximation to attractors of a modified Kelvin–Voigt model”, Comput. Math. Math. Phys., 62:2 (2022), 325–335  mathnet  crossref  crossref  mathscinet  isi  elib  scopus
11. M. Turbin, A. Ustiuzhaninova, “Pullback attractors for weak solution to modified Kelvin-Voigt model”, Evolution Equations and Control Theory, 11:6 (2022), 2055–2072  crossref 9
12. A. Ustiuzhaninova, M. Turbin, “Feedback Control Problem for Modified Kelvin-Voigt Model”, Journal of Dynamical and Control Systems, 28:3 (2022), 465–480  crossref 11

   2021
13. A. S. Ustiuzhaninova, M. V. Turbin, “Trajectory and global attractors for a modified Kelvin—Voigt model”, J. Appl. Industr. Math., 15:1 (2021), 158–168  mathnet  crossref  crossref  elib  scopus
14. V. Zvyagin, M. Turbin, “Optimal feedback control problem for inhomogeneous Voigt fluid motion model”, Journal of Fixed Point Theory and Applications, 23 (2021), 4 , 38 pp.  crossref 9
15. A. Ashyralyev, V. Zvyagin, M. Turbin, “The convergence of approximation attractors to attractors for Bingham model with periodical boundary conditions on spatial variables”, AIP Conference Proceedings, 2325 (2021), 020026 , 6 pp.  crossref

   2020
16. V. G. Zvyagin, M. V. Turbin, “The optimal feedback control problem for Voigt model with variable density”, Russian Math. (Iz. VUZ), 64:4 (2020), 80–84  mathnet  crossref  crossref  isi  scopus
17. V. Yu. Lyapidevskii, M. V. Turbin, F. F. Khrapchenkov, V. F. Kukarin, “Nonlinear internal waves in multilayer shallow water”, J. Appl. Mech. Tech. Phys., 61:1 (2020), 45–53  mathnet  crossref  crossref  elib

   2019
18. M. V. Turbin, A. S. Ustiuzhaninova, “The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions”, Russian Math. (Iz. VUZ), 63:8 (2019), 54–69  mathnet  crossref  crossref  isi  scopus
19. P. I. Plotnikov, M. V. Turbin, A. S. Ustiuzhaninova, “Existence Theorem for a Weak Solution of the Optimal Feedback Control Problem for the Modified Kelvin-Voigt Model of Weakly Concentrated Aqueous Polymer Solutions”, Doklady Mathematics, 100:2 (2019), 433–435  crossref  crossref  elib
20. V. G. Zvyagin, M. V. Turbin, “Optimal Feedback Control Problem for Bingham Media Motion with Periodic Boundary Conditions”, Doklady Mathematics, 99:2 (2019), 140–142  crossref  crossref

   2020
21. V. G. Zvyagin, A. V. Zvyagin, M. V. Turbin, “Optimal feedback control problem for the Bingham model with periodical boundary conditions on spatial variables”, Journal of Mathematical Sciences, 244:6 (2020), 959–980  mathnet  crossref

   2011
22. V. G. Zvyagin, M. V. Turbin, “Optimal Feedback Control in the Mathematical Model of Low Concentrated Aqueous Polymer Solutions”, Journal of Optimization Theory and Applications, 148:1 (2011), 146–163  crossref 12

   2010
23. V. G. Zvyagin, M. V. Turbin, “The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids”, Journal of Mathematical Sciences, 168:2 (2010), 157–308  mathnet  crossref  mathscinet  elib  scopus

   2006
24. M. V. Turbin, “On the correct formulation of initial-boundary value problems for the generalized Kelvin–Voigt model”, Russian Math. (Iz. VUZ), 50:3 (2006), 47–55  mathnet  mathscinet  zmath
25. M. V. Turbin, “Research of a mathematical model of low-concentrated aqueous polymer solutions”, Abstract and Applied Analysis, 2006, 012497 , 28 pp.  crossref 8

Presentations in Math-Net.Ru
1. Оптимальное управление с обратной связью движением среды Бингама с периодическими условиями по пространственным переменным
M. V. Turbin
Differential geometry and applications
September 17, 2018 16:45

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024