Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Novikov, Evgenii Aleksandrovich

Statistics Math-Net.Ru
Total publications: 40
Scientific articles: 40

Number of views:
This page:4168
Abstract pages:9887
Full texts:4515
References:1089
Professor
Doctor of physico-mathematical sciences (1991)
Speciality: 01.01.07 (Computing mathematics)
Birth date: 1.01.1951
E-mail:
Keywords: stiff systems, additive systems, one-step methods, Runge-Kutta methods, (m,k)-methods, error estimation, stability control.
UDC: 519.622, 681.3, 519.63, 519.622.852
MSC: 65L20, 65L05, 34A34

Subject:

Computational mathematics, methods of solving the numerical stiff systems, chemical kinetics, simulation of the problems in mechanics and electronics.

Biography

Evgenii A. Novikov was born in Voronezh, Russia. He completed his Diploma in Applied mathematics at the Voronezh State University, Voronezh, Russia in 1978. In 1982 he took the Russian degree of Candidate in Physics and Mathematics at the Computer Center of the Russian Academy of Sciences, Novosibirsk. In 1992 E. A. Novikov was awarded the Russian degree of Doctor in Physics and Mathematics from Computer Center of the Russian Academy of Sciences, Novosibirsk with the thesis "One-step noniteration methods of solution of stiff systems". In 1993 he took Professor Diploma at the Chair "Mathematical support of discrete devices and systems". From 1978 to 1985 he is as a research worker at the Computing center SB RAS in Novosibirsk. Since 1985 E. A. Novikov is Head-Scientist at the Computer Center of the Russian Academy of Sciences in Krasnoyarsk, Russia (now renamed the Institute of Computational Modelling of the Russian Academy of Sciences). E. A. Novikov is a known specialist in the field of computational mathematics. He is author of one monography and over 200 scientific papers, devoted to numeric methods of solution of ordinary differential equations, and their applications.

   
Main publications:
  • Novikov E. A. Explicit methods for stiff sistems / Novosibirsk: Nauka, 1997. - 195 p.
  • Novikov E. A. The program NODE for solution of ODE stiff systems // Novosibirsk: NCC Publisher, Bulletin of the Novosibirsk computing center, Numerical Analysis, 11, 2002. - p. 95–101.

https://www.mathnet.ru/eng/person30178
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2022
1. I. V. Kireev, A. E. Novikov, E. A. Novikov, “Stability domains of explicit multistep methods”, Sib. Zh. Vychisl. Mat., 25:4 (2022),  417–428  mathnet
2020
2. A. I. Levykin, A. E. Novikov, E. A. Novikov, “$(m, k)$-schemes for stiff systems of ODEs and DAEs”, Sib. Zh. Vychisl. Mat., 23:1 (2020),  39–51  mathnet; Num. Anal. Appl., 13:1 (2020), 34–44  isi
2017
3. A. E. Novikov, E. A. Novikov, M. V. Rybkov, “An algorithm of variable structure based on three-stage explicit-implicit methods”, Sib. Èlektron. Mat. Izv., 14 (2017),  433–442  mathnet  isi 2
2016
4. Eugeny A. Novikov, Mikhail V. Rybkov, “Application of explicit methods with extended stability regions for solving stiff problems”, J. Sib. Fed. Univ. Math. Phys., 9:2 (2016),  209–219  mathnet  isi 3
2015
5. E. A. Novikov, “A variable structure algorithm using the (3,2)-scheme and the Fehlberg method”, Num. Meth. Prog., 16:3 (2015),  446–455  mathnet
2014
6. E. A. Novikov, “Numerical modelling of the ring modulator by the method for implicit systems solution”, University proceedings. Volga region. Physical and mathematical sciences, 2014, no. 4,  17–27  mathnet
2013
7. E. A. Novikov, “Algorithm variable order, step and the configuration variables for solving stiff problems”, Izv. Saratov Univ. Math. Mech. Inform., 13:3 (2013),  35–43  mathnet
8. E. A. Novikov, “The integration algorithm using the $L$-stable and explicit methods”, University proceedings. Volga region. Physical and mathematical sciences, 2013, no. 3,  58–69  mathnet
9. E. A. Novikov, “An integration algorithm using the methods of Rosenbrock and Ceschino”, Num. Meth. Prog., 14:2 (2013),  254–261  mathnet
2012
10. E. A. Novikov, “Algorithm of integrating stiff problems using the explicit and implicit methods”, Izv. Saratov Univ. Math. Mech. Inform., 12:4 (2012),  19–27  mathnet  elib 2
11. E. A. Novikov, “Heterogeneous integration algorithm of based three-stages methods”, Program Systems: Theory and Applications, 3:5 (2012),  59–69  mathnet
12. E. A. Novikov, “A third-order numerical method for solving nonautonomous additive stiff problems”, Num. Meth. Prog., 13:4 (2012),  479–490  mathnet 1
2011
13. E. A. Novikov, “Variable order and step algorithm based on a stages of Runge–Kutta method of third order of accuracy”, Izv. Saratov Univ. Math. Mech. Inform., 11:3(1) (2011),  46–53  mathnet 2
14. E. A. Novikov, “The global error of one-step solution methods for stiff problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 6,  80–89  mathnet  mathscinet; Russian Math. (Iz. VUZ), 55:6 (2011), 68–75  scopus 1
15. Gennadiy V. Vashchenko, Evgeniy A. Novikov, “Parallel algorithm explicit Euler method with accuracy control”, J. Sib. Fed. Univ. Math. Phys., 4:1 (2011),  70–76  mathnet 3
16. E. A. Novikov, “Maximal order of accuracy of $(m, 1)$-methods for solving stiff problems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(24) (2011),  100–107  mathnet 1
17. E. A. Novikov, “L-stable (4,2)-method of the fourth order for solving stiff problems”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2011, no. 8(89),  59–68  mathnet 2
18. E. A. Novikov, “Approximation of the Jacobian matrix in $(m,2)$-methods for solving stiff problems”, Zh. Vychisl. Mat. Mat. Fiz., 51:12 (2011),  2194–2208  mathnet  mathscinet; Comput. Math. Math. Phys., 51:12 (2011), 2065–2078  isi  scopus 3
2010
19. E. A. Novikov, “Numerical simulation of ethane pyrolysis by an explicit method of the third order of accuracy”, University proceedings. Volga region. Physical and mathematical sciences, 2010, no. 4,  64–72  mathnet
20. A. E. Novikov, E. A. Novikov, “Numerical integration of stiff systems with low accuracy”, Matem. Mod., 22:1 (2010),  46–56  mathnet  mathscinet  zmath; Math. Models Comput. Simul., 2:4 (2010), 443–452  scopus 13
21. E. A. Novikov, “An additive third order method for solving rigid nonautonomous problems”, Sib. Zh. Ind. Mat., 13:1 (2010),  84–94  mathnet  mathscinet; J. Appl. Industr. Math., 4:4 (2010), 539–548
22. E. A. Novikov, “Numerical modeling of a modified oregonator by the (2,1)-method for solving stiff problems”, Num. Meth. Prog., 11:3 (2010),  281–288  mathnet 3
2009
23. E. A. Novikov, “Construction of stability domains for explicit Runge-Kutta methods”, Num. Meth. Prog., 10:2 (2009),  248–257  mathnet 3
2008
24. A. L. Dvinsky, E. A. Novikov, “Approximation of the Jacobi matrix in $(m,3)$-methods of solving stiff systems”, Sib. Zh. Vychisl. Mat., 11:3 (2008),  283–295  mathnet; Num. Anal. Appl., 1:3 (2008), 233–243 1
2007
25. E. A. Novikov, A. O. Tuzov, “A non-homogeneous method of third order for additive stiff systems”, Matem. Mod., 19:6 (2007),  61–70  mathnet  mathscinet  zmath 4
26. E. A. Novikov, Yu. V. Shornikov, “Control of the stability of the Dormand-Prince method”, Sib. Zh. Ind. Mat., 10:4 (2007),  95–103  mathnet  mathscinet
27. E. A. Novikov, A. O. Tuzov, “Six-stages method of order 3 for the solution of additive stiff systems”, Sib. Zh. Vychisl. Mat., 10:3 (2007),  307–316  mathnet 1
28. L. V. Knaub, Yu. M. Laevsky, E. A. Novikov, “Variable order and step integrating algorithm based on the explicit two-stage Runge–Kutta method”, Sib. Zh. Vychisl. Mat., 10:2 (2007),  177–185  mathnet 4
29. A. E. Novikov, E. A. Novikov, “An algorithm of variable order and step based on stages of the Dormand-Prince method of the eighth order of accuracy”, Num. Meth. Prog., 8:4 (2007),  317–325  mathnet
1996
30. A. I. Levykin, E. A. Novikov, “The class of $(m,k)$-methods for solving implicit systems”, Dokl. Akad. Nauk, 348:4 (1996),  442–445  mathnet  mathscinet  zmath 1
1995
31. E. A. Novikov, “An estimate for the global error of $A$-stable methods for solving stiff systems”, Dokl. Akad. Nauk, 343:4 (1995),  452–455  mathnet  mathscinet  zmath 5
1990
32. E. A. Novikov, V. I. Babushok, “Kinetics of explosive processes”, Fizika Goreniya i Vzryva, 26:4 (1990),  85–93  mathnet; Combustion, Explosion and Shock Waves, 26:4 (1990), 450–457
1989
33. E. A. Novikov, Yu. A. Shitov, Yu. I. Shokin, “On a class of $(m,k)$-methods for solving stiff systems”, Zh. Vychisl. Mat. Mat. Fiz., 29:2 (1989),  194–201  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 29:1 (1989), 132–137 5
1988
34. E. A. Novikov, Yu. A. Shitov, Yu. I. Shokin, “One-step noniterative methods for solving stiff systems”, Dokl. Akad. Nauk SSSR, 301:6 (1988),  1310–1314  mathnet  mathscinet  zmath; Dokl. Math., 38:1 (1989), 212–216 11
35. V. K. Durakova, V. A. Novikov, E. A. Novikov, “Explicit first-order Runge–Kutta methods with a given stability interval”, Zh. Vychisl. Mat. Mat. Fiz., 28:4 (1988),  603–607  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 28:2 (1988), 193–196
1987
36. E. A. Novikov, L. A. Yumatova, “Some methods for solving ordinary differential equations that are not solved with respect to the derivative”, Dokl. Akad. Nauk SSSR, 295:4 (1987),  809–812  mathnet  mathscinet  zmath; Dokl. Math., 36:1 (1988), 138–141
37. V. A. Novikov, E. A. Novikov, L. A. Yumatova, “Freezing of the Jacobi matrix in a second order Rosenbrock method”, Zh. Vychisl. Mat. Mat. Fiz., 27:3 (1987),  385–390  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 27:2 (1987), 41–45 13
1985
38. V. A. Novikov, E. A. Novikov, “Raising the efficiency of algorithms for the integration of ordinary differential equations at the expense of loss of stability”, Zh. Vychisl. Mat. Mat. Fiz., 25:7 (1985),  1023–1030  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 25:4 (1985), 39–43 6
1984
39. E. A. Novikov, “Construction of an algorithm for integration of stiff differential equations on nonuniform schemes”, Dokl. Akad. Nauk SSSR, 278:2 (1984),  272–275  mathnet  mathscinet  zmath 4
40. V. A. Novikov, E. A. Novikov, “Control of the stability of explicit one-step methods of integration of ordinary differential equations”, Dokl. Akad. Nauk SSSR, 277:5 (1984),  1058–1062  mathnet  mathscinet  zmath 6

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024