Computational mathematics, methods of solving the numerical stiff systems, chemical kinetics, simulation of the problems in mechanics and electronics.
Biography
Evgenii A. Novikov was born in Voronezh, Russia. He completed his Diploma in Applied mathematics at the Voronezh State University, Voronezh, Russia in 1978. In 1982 he took the Russian degree of Candidate in Physics and Mathematics at the Computer Center of the Russian Academy of Sciences, Novosibirsk. In 1992 E. A. Novikov was awarded the Russian degree of Doctor in Physics and Mathematics from Computer Center of the Russian Academy of Sciences, Novosibirsk with the thesis "One-step noniteration methods of solution of stiff systems". In 1993 he took Professor Diploma at the Chair "Mathematical support of discrete devices and systems". From 1978 to 1985 he is as a research worker at the Computing center SB RAS in Novosibirsk. Since 1985 E. A. Novikov is Head-Scientist at the Computer Center of the Russian Academy of Sciences in Krasnoyarsk, Russia (now renamed the Institute of Computational Modelling of the Russian Academy of Sciences). E. A. Novikov is a known specialist in the field of computational mathematics. He is author of one monography and over 200 scientific papers, devoted to numeric methods of solution of ordinary differential equations, and their applications.
Main publications:
Novikov E. A. Explicit methods for stiff sistems / Novosibirsk: Nauka, 1997. - 195 p.
Novikov E. A. The program NODE for solution of ODE stiff systems // Novosibirsk: NCC Publisher, Bulletin of the Novosibirsk computing center, Numerical Analysis, 11, 2002. - p. 95–101.
I. V. Kireev, A. E. Novikov, E. A. Novikov, “Stability domains of explicit multistep
methods”, Sib. Zh. Vychisl. Mat., 25:4 (2022), 417–428
2020
2.
A. I. Levykin, A. E. Novikov, E. A. Novikov, “$(m, k)$-schemes for stiff systems of ODEs and DAEs”, Sib. Zh. Vychisl. Mat., 23:1 (2020), 39–51; Num. Anal. Appl., 13:1 (2020), 34–44
2017
3.
A. E. Novikov, E. A. Novikov, M. V. Rybkov, “An algorithm of variable structure based on three-stage explicit-implicit methods”, Sib. Èlektron. Mat. Izv., 14 (2017), 433–442
Eugeny A. Novikov, Mikhail V. Rybkov, “Application of explicit methods with extended stability regions for solving stiff problems”, J. Sib. Fed. Univ. Math. Phys., 9:2 (2016), 209–219
E. A. Novikov, “A variable structure algorithm using the (3,2)-scheme and the Fehlberg method”, Num. Meth. Prog., 16:3 (2015), 446–455
2014
6.
E. A. Novikov, “Numerical modelling of the ring modulator by the method for implicit systems solution”, University proceedings. Volga region. Physical and mathematical sciences, 2014, no. 4, 17–27
2013
7.
E. A. Novikov, “Algorithm variable order, step and the configuration variables for solving stiff problems”, Izv. Saratov Univ. Math. Mech. Inform., 13:3 (2013), 35–43
8.
E. A. Novikov, “The integration algorithm using the $L$-stable and explicit methods”, University proceedings. Volga region. Physical and mathematical sciences, 2013, no. 3, 58–69
9.
E. A. Novikov, “An integration algorithm using the methods of Rosenbrock and Ceschino”, Num. Meth. Prog., 14:2 (2013), 254–261
2012
10.
E. A. Novikov, “Algorithm of integrating stiff problems using the explicit and implicit methods”, Izv. Saratov Univ. Math. Mech. Inform., 12:4 (2012), 19–27
E. A. Novikov, “Variable order and step algorithm based on a stages of Runge–Kutta method of third order of accuracy”, Izv. Saratov Univ. Math. Mech. Inform., 11:3(1) (2011), 46–53
E. A. Novikov, “The global error of one-step solution methods for stiff problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 6, 80–89; Russian Math. (Iz. VUZ), 55:6 (2011), 68–75
E. A. Novikov, “Maximal order of accuracy of $(m, 1)$-methods for solving stiff problems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(24) (2011), 100–107
E. A. Novikov, “L-stable (4,2)-method of the fourth order for solving stiff problems”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2011, no. 8(89), 59–68
E. A. Novikov, “Approximation of the Jacobian matrix in $(m,2)$-methods for solving stiff problems”, Zh. Vychisl. Mat. Mat. Fiz., 51:12 (2011), 2194–2208; Comput. Math. Math. Phys., 51:12 (2011), 2065–2078
E. A. Novikov, “Numerical simulation of ethane pyrolysis by an explicit method of the third order of accuracy”, University proceedings. Volga region. Physical and mathematical sciences, 2010, no. 4, 64–72
20.
A. E. Novikov, E. A. Novikov, “Numerical integration of stiff systems with low accuracy”, Matem. Mod., 22:1 (2010), 46–56; Math. Models Comput. Simul., 2:4 (2010), 443–452
E. A. Novikov, “An additive third order method for solving rigid nonautonomous problems”, Sib. Zh. Ind. Mat., 13:1 (2010), 84–94; J. Appl. Industr. Math., 4:4 (2010), 539–548
22.
E. A. Novikov, “Numerical modeling of a modified oregonator by the (2,1)-method
for solving stiff problems”, Num. Meth. Prog., 11:3 (2010), 281–288
A. L. Dvinsky, E. A. Novikov, “Approximation of the Jacobi matrix in $(m,3)$-methods of solving stiff systems”, Sib. Zh. Vychisl. Mat., 11:3 (2008), 283–295; Num. Anal. Appl., 1:3 (2008), 233–243
L. V. Knaub, Yu. M. Laevsky, E. A. Novikov, “Variable order and step integrating algorithm based on the explicit two-stage Runge–Kutta method”, Sib. Zh. Vychisl. Mat., 10:2 (2007), 177–185
A. E. Novikov, E. A. Novikov, “An algorithm of variable order and step based on stages of the Dormand-Prince method of the eighth order of accuracy”, Num. Meth. Prog., 8:4 (2007), 317–325
1996
30.
A. I. Levykin, E. A. Novikov, “The class of $(m,k)$-methods for solving implicit systems”, Dokl. Akad. Nauk, 348:4 (1996), 442–445
E. A. Novikov, V. I. Babushok, “Kinetics of explosive processes”, Fizika Goreniya i Vzryva, 26:4 (1990), 85–93; Combustion, Explosion and Shock Waves, 26:4 (1990), 450–457
1989
33.
E. A. Novikov, Yu. A. Shitov, Yu. I. Shokin, “On a class of $(m,k)$-methods for solving stiff systems”, Zh. Vychisl. Mat. Mat. Fiz., 29:2 (1989), 194–201; U.S.S.R. Comput. Math. Math. Phys., 29:1 (1989), 132–137
E. A. Novikov, Yu. A. Shitov, Yu. I. Shokin, “One-step noniterative methods for solving stiff systems”, Dokl. Akad. Nauk SSSR, 301:6 (1988), 1310–1314; Dokl. Math., 38:1 (1989), 212–216
V. K. Durakova, V. A. Novikov, E. A. Novikov, “Explicit first-order Runge–Kutta methods with a given stability interval”, Zh. Vychisl. Mat. Mat. Fiz., 28:4 (1988), 603–607; U.S.S.R. Comput. Math. Math. Phys., 28:2 (1988), 193–196
1987
36.
E. A. Novikov, L. A. Yumatova, “Some methods for solving ordinary differential equations that are
not solved with respect to the derivative”, Dokl. Akad. Nauk SSSR, 295:4 (1987), 809–812; Dokl. Math., 36:1 (1988), 138–141
37.
V. A. Novikov, E. A. Novikov, L. A. Yumatova, “Freezing of the Jacobi matrix in a second order Rosenbrock method”, Zh. Vychisl. Mat. Mat. Fiz., 27:3 (1987), 385–390; U.S.S.R. Comput. Math. Math. Phys., 27:2 (1987), 41–45
V. A. Novikov, E. A. Novikov, “Raising the efficiency of algorithms for the integration of ordinary differential equations at the expense of loss of stability”, Zh. Vychisl. Mat. Mat. Fiz., 25:7 (1985), 1023–1030; U.S.S.R. Comput. Math. Math. Phys., 25:4 (1985), 39–43
E. A. Novikov, “Construction of an algorithm for integration of stiff differential
equations on nonuniform schemes”, Dokl. Akad. Nauk SSSR, 278:2 (1984), 272–275
V. A. Novikov, E. A. Novikov, “Control of the stability of explicit one-step methods of
integration of ordinary differential equations”, Dokl. Akad. Nauk SSSR, 277:5 (1984), 1058–1062